本文研究的主要是Pythonpython/279099.html">验证码识别的相关代码,具体如下。
Talk is cheap, show you the Code!
import numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeansfrom PIL import Image#打开图像im=np.array(Image.open('yzm.png'))#得到图像3个维度h,w,san=im.shapeX=[(h-x,y) for x in range(h) for y in range (w) if im[x][y][2]<200]#将X转换成numpy的array类型,方便后续运算操作X=np.array(X)n_clusters=4k_means=KMeans(init='k-means++',n_clusters=n_clusters)k_means.fit(X)k_means_labels=k_means.labels_k_means_cluster_centers=k_means.cluster_centers_k_means_labels_unique=np.unique(k_means_labels)colors=['#4EACC5','#FF9C34','#4E9A06','#FF3300']plt.figure()plt.hold(True)for k,col in zip(range(n_clusters),colors): my_members=k_means_labels==k cluster_center=k_means_cluster_centers[k] plt.plot(X[my_members,1],X[my_members,0],'w',markerfacecolor=col,marker='.') plt.plot(cluster_center[1],cluster_center[0],'o',markerfacecolor=col,markeredgecolor='k',markersize=6)plt.title('KMeans')plt.grid(True)plt.show()
以上就是本文关于python验证码识别实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
新闻热点
疑难解答