首页 > 编程 > Python > 正文

python生成tensorflow输入输出的图像格式的方法

2020-01-04 15:51:26
字体:
来源:转载
供稿:网友

TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进python/303709.html">tensorflow;也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取。下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出。

import cv2 import numpy as np import h5py  height = 460 width = 345  with h5py.File('make3d_dataset_f460.mat','r') as f:   images = f['images'][:]    image_num = len(images)  data = np.zeros((image_num, height, width, 3), np.uint8) data = images.transpose((0,3,2,1)) 

先生成图像文件的路径:ls *.jpg> list.txt

import cv2 import numpy as np  image_path = './' list_file = 'list.txt' height = 48 width = 48  image_name_list = [] # read image with open(image_path + list_file) as fid:   image_name_list = [x.strip() for x in fid.readlines()] image_num = len(image_name_list)  data = np.zeros((image_num, height, width, 3), np.uint8)  for idx in range(image_num):   img = cv2.imread(image_name_list[idx])   img = cv2.resize(img, (height, width))   data[idx, :, :, :] = img 

2 Tensorflow自带函数读取

def get_image(image_path):   """Reads the jpg image from image_path.   Returns the image as a tf.float32 tensor   Args:     image_path: tf.string tensor   Reuturn:     the decoded jpeg image casted to float32   """   return tf.image.convert_image_dtype(     tf.image.decode_jpeg(       tf.read_file(image_path), channels=3),     dtype=tf.uint8) 

pipeline读取方法

# Example on how to use the tensorflow input pipelines. The explanation can be found here ischlag.github.io. import tensorflow as tf import random from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes  dataset_path   = "/path/to/your/dataset/mnist/" test_labels_file = "test-labels.csv" train_labels_file = "train-labels.csv"  test_set_size = 5  IMAGE_HEIGHT = 28 IMAGE_WIDTH  = 28 NUM_CHANNELS = 3 BATCH_SIZE  = 5  def encode_label(label):  return int(label)  def read_label_file(file):  f = open(file, "r")  filepaths = []  labels = []  for line in f:   filepath, label = line.split(",")   filepaths.append(filepath)   labels.append(encode_label(label))  return filepaths, labels  # reading labels and file path train_filepaths, train_labels = read_label_file(dataset_path + train_labels_file) test_filepaths, test_labels = read_label_file(dataset_path + test_labels_file)  # transform relative path into full path train_filepaths = [ dataset_path + fp for fp in train_filepaths] test_filepaths = [ dataset_path + fp for fp in test_filepaths]  # for this example we will create or own test partition all_filepaths = train_filepaths + test_filepaths all_labels = train_labels + test_labels  all_filepaths = all_filepaths[:20] all_labels = all_labels[:20]  # convert string into tensors all_images = ops.convert_to_tensor(all_filepaths, dtype=dtypes.string) all_labels = ops.convert_to_tensor(all_labels, dtype=dtypes.int32)  # create a partition vector partitions = [0] * len(all_filepaths) partitions[:test_set_size] = [1] * test_set_size random.shuffle(partitions)  # partition our data into a test and train set according to our partition vector train_images, test_images = tf.dynamic_partition(all_images, partitions, 2) train_labels, test_labels = tf.dynamic_partition(all_labels, partitions, 2)  # create input queues train_input_queue = tf.train.slice_input_producer(                   [train_images, train_labels],                   shuffle=False) test_input_queue = tf.train.slice_input_producer(                   [test_images, test_labels],                   shuffle=False)  # process path and string tensor into an image and a label file_content = tf.read_file(train_input_queue[0]) train_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) train_label = train_input_queue[1]  file_content = tf.read_file(test_input_queue[0]) test_image = tf.image.decode_jpeg(file_content, channels=NUM_CHANNELS) test_label = test_input_queue[1]  # define tensor shape train_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS]) test_image.set_shape([IMAGE_HEIGHT, IMAGE_WIDTH, NUM_CHANNELS])   # collect batches of images before processing train_image_batch, train_label_batch = tf.train.batch(                   [train_image, train_label],                   batch_size=BATCH_SIZE                   #,num_threads=1                   ) test_image_batch, test_label_batch = tf.train.batch(                   [test_image, test_label],                   batch_size=BATCH_SIZE                   #,num_threads=1                   )  print "input pipeline ready"  with tf.Session() as sess:    # initialize the variables  sess.run(tf.initialize_all_variables())    # initialize the queue threads to start to shovel data  coord = tf.train.Coordinator()  threads = tf.train.start_queue_runners(coord=coord)   print "from the train set:"  for i in range(20):   print sess.run(train_label_batch)   print "from the test set:"  for i in range(10):   print sess.run(test_label_batch)   # stop our queue threads and properly close the session  coord.request_stop()  coord.join(threads)  sess.close() 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表