首页 > 编程 > Python > 正文

python构建深度神经网络(续)

2020-01-04 15:43:17
字体:
来源:转载
供稿:网友

这篇文章在前一篇文章:python构建深度神经网络(DNN)的基础上,添加了一下几个内容:

1) 正则化项

2) 调出中间损失函数的输出

3) 构建了交叉损失函数

4) 将训练好的网络进行保存,并调用用来测试新数据

1  数据预处理

#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:11 # @Author : CC # @File : net_load_data.py  from numpy import * import numpy as np import cPickle def load_data():  """载入解压后的数据,并读取"""  with open('data/mnist_pkl/mnist.pkl','rb') as f:   try:    train_data,validation_data,test_data = cPickle.load(f)    print " the file open sucessfully"    # print train_data[0].shape #(50000,784)    # print train_data[1].shape #(50000,)    return (train_data,validation_data,test_data)   except EOFError:    print 'the file open error'    return None  def data_transform():  """将数据转化为计算格式"""  t_d,va_d,te_d = load_data()  # print t_d[0].shape # (50000,784)  # print te_d[0].shape # (10000,784)  # print va_d[0].shape # (10000,784)  # n1 = [np.reshape(x,784,1) for x in t_d[0]] # 将5万个数据分别逐个取出化成(784,1),逐个排列  n = [np.reshape(x, (784, 1)) for x in t_d[0]] # 将5万个数据分别逐个取出化成(784,1),逐个排列  # print 'n1',n1[0].shape  # print 'n',n[0].shape  m = [vectors(y) for y in t_d[1]] # 将5万标签(50000,1)化为(10,50000)  train_data = zip(n,m) # 将数据与标签打包成元组形式  n = [np.reshape(x, (784, 1)) for x in va_d[0]] # 将5万个数据分别逐个取出化成(784,1),排列  validation_data = zip(n,va_d[1]) # 没有将标签数据矢量化  n = [np.reshape(x, (784, 1)) for x in te_d[0]] # 将5万个数据分别逐个取出化成(784,1),排列  test_data = zip(n, te_d[1]) # 没有将标签数据矢量化  # print train_data[0][0].shape #(784,)  # print "len(train_data[0])",len(train_data[0]) #2  # print "len(train_data[100])",len(train_data[100]) #2  # print "len(train_data[0][0])", len(train_data[0][0]) #784  # print "train_data[0][0].shape", train_data[0][0].shape #(784,1)  # print "len(train_data)", len(train_data) #50000  # print train_data[0][1].shape #(10,1)  # print test_data[0][1] # 7  return (train_data,validation_data,test_data) def vectors(y):  "赋予标签"  label = np.zeros((10,1))  label[y] = 1.0 #浮点计算  return label 

2 网络定义和训练

#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-28 10:18 # @Author : CC # @File : net_network2.py  from numpy import * import numpy as np import operator import json # import sys  class QuadraticCost():  """定义二次代价函数类的方法"""  @staticmethod  def fn(a,y):   cost = 0.5*np.linalg.norm(a-y)**2   return cost  @staticmethod  def delta(z,a,y):   delta = (a-y)*sig_derivate(z)   return delta  class CrossEntroyCost():  """定义交叉熵函数类的方法"""  @staticmethod  def fn(a, y):   cost = np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a))) # not a number---0, inf---larger number   return cost  @staticmethod  def delta(z, a, y):   delta = (a - y)   return delta  class Network(object):  """定义网络结构和方法"""  def __init__(self,sizes,cost):   self.num_layer = len(sizes)   self.sizes = sizes   self.cost = cost   # print "self.cost.__name__:",self.cost.__name__ # CrossEntropyCost   self.default_weight_initializer()  def default_weight_initializer(self):   """权值初始化"""   self.bias = [np.random.rand(x, 1) for x in self.sizes[1:]]   self.weight = [np.random.randn(y, x)/float(np.sqrt(x)) for (x, y) in zip(self.sizes[:-1], self.sizes[1:])]   def large_weight_initializer(self):   """权值另一种初始化"""   self.bias = [np.random.rand(x, 1) for x in self.sizes[1:]]   self.weight = [np.random.randn(y, x) for x, y in zip(self.sizes[:-1], self.sizes[1:])]  def forward(self,a):   """forward the network"""   for w,b in zip(self.weight,self.bias):    a=sigmoid(np.dot(w,a)+b)   return a   def SGD(self,train_data,min_batch_size,epochs,eta,test_data=False,    lambd = 0,    monitor_train_cost = False,    monitor_train_accuracy = False,    monitor_test_cost=False,    monitor_test_accuracy=False    ):   """1)Set the train_data,shuffle;    2) loop the epoches,    3) set the min_batches,and rule of update"""   if test_data: n_test=len(test_data)   n = len(train_data)   for i in xrange(epochs):    random.shuffle(train_data)    min_batches = [train_data[k:k+min_batch_size] for k in xrange(0,n,min_batch_size)]     for min_batch in min_batches: # 每次提取一个批次的样本     self.update_minbatch_parameter(min_batch,eta,lambd,n)    train_cost = []    if monitor_train_cost:     cost1 = self.total_cost(train_data,lambd,cont=False)     train_cost.append(cost1)     print "epoche {0},train_cost: {1}".format(i,cost1)    if monitor_train_accuracy:     accuracy = self.accuracy(train_data,cont=True)     train_cost.append(accuracy)     print "epoche {0}/{1},train_accuracy: {2}".format(i,epochs,accuracy)    test_cost = []    if monitor_test_cost:     cost1 = self.total_cost(test_data,lambd)     test_cost.append(cost1)     print "epoche {0},test_cost: {1}".format(i,cost1)    test_accuracy = []    if monitor_test_accuracy:     accuracy = self.accuracy(test_data)     test_cost.append(accuracy)     print "epoche:{0}/{1},test_accuracy:{2}".format(i,epochs,accuracy)   self.save(filename= "net_save") #保存网络网络参数   def total_cost(self,train_data,lambd,cont=True):   cost1 = 0.0   for x,y in train_data:    a = self.forward(x)    if cont: y = vectors(y) #将测试样本标签化为矩阵    cost1 += (self.cost).fn(a,y)/len(train_data)   cost1 += lambd/len(train_data)*np.sum(np.linalg.norm(weight)**2 for weight in self.weight) #加上权值项   return cost1  def accuracy(self,train_data,cont=False):   if cont:    output1 = [(np.argmax(self.forward(x)),np.argmax(y)) for (x,y) in train_data]   else:    output1 = [(np.argmax(self.forward(x)), y) for (x, y) in train_data]   return sum(int(out1 == y) for (out1, y) in output1)  def update_minbatch_parameter(self,min_batch, eta,lambd,n):   """1) determine the weight and bias    2) calculate the the delta    3) update the data """   able_b = [np.zeros(b.shape) for b in self.bias]   able_w=[np.zeros(w.shape) for w in self.weight]   for x,y in min_batch: #每次只取一个样本?    deltab,deltaw = self.backprop(x,y)    able_b =[a_b+dab for a_b, dab in zip(able_b,deltab)] #实际上对dw,db做批次累加,最后小批次取平均    able_w = [a_w + daw for a_w, daw in zip(able_w, deltaw)]   self.weight = [weight - eta * (dw) / len(min_batch)- eta*(lambd*weight)/n for weight, dw in zip(self.weight,able_w) ]   #增加正则化项:eta*lambda/m *weight   self.bias = [bias - eta * db / len(min_batch) for bias, db in zip(self.bias, able_b)]   def backprop(self,x,y):   """" 1) clacu the forward value    2) calcu the delta: delta =(y-f(z)); deltak = delta*w(k)*fz(k-1)'    3) clacu the delta in every layer: deltab=delta; deltaw=delta*fz(k-1)"""   deltab = [np.zeros(b.shape) for b in self.bias]   deltaw = [np.zeros(w.shape) for w in self.weight]   zs = []   activate = x   activates = [x]   for w,b in zip(self.weight,self.bias):    z =np.dot(w, activate) +b    zs.append(z)    activate = sigmoid(z)    activates.append(activate)    # backprop   delta = self.cost.delta(zs[-1],activates[-1],y) #调用不同代价函数的方法求梯度   deltab[-1] = delta   deltaw[-1] = np.dot(delta ,activates[-2].transpose())   for i in xrange(2,self.num_layer):    z = zs[-i]    delta = np.dot(self.weight[-i+1].transpose(),delta)* sig_derivate(z)    deltab[-i] = delta    deltaw[-i] = np.dot(delta,activates[-i-1].transpose())   return (deltab,deltaw)   def save(self,filename):   """将训练好的网络采用json(java script object notation)将对象保存成字符串保存,用于生产部署   encoder=json.dumps(data)   python 原始类型(没有数组类型)向 json 类型的转化对照表:    python    json    dict    object   list/tuple   arrary   int/long/float  number   .tolist() 将数组转化为列表   >>> a = np.array([[1, 2], [3, 4]])   >>> list(a)   [array([1, 2]), array([3, 4])]   >>> a.tolist()   [[1, 2], [3, 4]]   """   data = {"sizes": self.sizes,"weight": [weight.tolist() for weight in self.weight],     "bias": ([bias.tolist() for bias in self.bias]),     "cost": str(self.cost.__name__)}   # 保存网络训练好的权值,偏置,交叉熵参数。   f = open(filename, "w")   json.dump(data,f)   f.close()  def load_net(filename):  """采用data=json.load(json.dumps(data))进行解码,  decoder = json.load(encoder)  编码后和解码后键不会按照原始data的键顺序排列,但每个键对应的值不会变  载入训练好的网络用于测试"""  f = open(filename,"r")  data = json.load(f)  f.close()  # print "data[cost]", getattr(sys.modules[__name__], data["cost"])#获得属性__main__.CrossEntropyCost  # print "data[cost]", data["cost"], data["sizes"]  net = Network(data["sizes"], cost=data["cost"]) #网络初始化  net.weight = [np.array(w) for w in data["weight"]] #赋予训练好的权值,并将list--->array  net.bias = [np.array(b) for b in data["bias"]]  return net  def sig_derivate(z):  """derivate sigmoid"""  return sigmoid(z) * (1-sigmoid(z))  def sigmoid(x):  sigm=1.0/(1.0+exp(-x))  return sigm  def vectors(y):  """赋予标签"""  label = np.zeros((10,1))  label[y] = 1.0 #浮点计算  return label 

3) 网络测试

#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-12 15:24 # @Author : CC # @File : net_test.py  import net_load_data # net_load_data.load_data() train_data,validation_data,test_data = net_load_data.data_transform()  import net_network2 as net cost = net.QuadraticCost cost = net.CrossEntroyCost lambd = 0 net1 = net.Network([784,50,10],cost) min_batch_size = 30 eta = 3.0 epoches = 2 net1.SGD(train_data,min_batch_size,epoches,eta,test_data,    lambd,    monitor_train_cost=True,    monitor_train_accuracy=True,    monitor_test_cost=True,    monitor_test_accuracy=True    ) print "complete" 

4 调用训练好的网络进行测试

#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017-03-28 17:27 # @Author : CC # @File : forward_test.py  import numpy as np # 对训练好的网络直接进行调用,并用测试样本进行测试 import net_load_data #导入测试数据 import net_network2 as net train_data,validation_data,test_data = net_load_data.data_transform() net = net.load_net(filename= "net_save")  #导入网络 output = [(np.argmax(net.forward(x)),y) for (x,y) in test_data] #测试 print sum(int(y1 == y2) for (y1,y2) in output)  #输出最终值 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表