首页 > 编程 > Python > 正文

PyTorch快速搭建神经网络及其保存提取方法详解

2020-01-04 15:18:32
字体:
来源:转载
供稿:网友

有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解

一、PyTorch快速搭建神经网络方法

先看实验代码:

import torch import torch.nn.functional as F  # 方法1,通过定义一个Net类来建立神经网络 class Net(torch.nn.Module):   def __init__(self, n_feature, n_hidden, n_output):     super(Net, self).__init__()     self.hidden = torch.nn.Linear(n_feature, n_hidden)     self.predict = torch.nn.Linear(n_hidden, n_output)    def forward(self, x):     x = F.relu(self.hidden(x))     x = self.predict(x)     return x  net1 = Net(2, 10, 2) print('方法1:/n', net1)  # 方法2 通过torch.nn.Sequential快速建立神经网络结构 net2 = torch.nn.Sequential(   torch.nn.Linear(2, 10),   torch.nn.ReLU(),   torch.nn.Linear(10, 2),   ) print('方法2:/n', net2) # 经验证,两种方法构建的神经网络功能相同,结构细节稍有不同  ''''' 方法1:  Net (  (hidden): Linear (2 -> 10)  (predict): Linear (10 -> 2) ) 方法2:  Sequential (  (0): Linear (2 -> 10)  (1): ReLU ()  (2): Linear (10 -> 2) ) ''' 

先前学习了通过定义一个Net类来构建神经网络的方法,classNet中首先通过super函数继承torch.nn.Module模块的构造方法,再通过添加属性的方式搭建神经网络各层的结构信息,在forward方法中完善神经网络各层之间的连接信息,然后再通过定义Net类对象的方式完成对神经网络结构的构建。

构建神经网络的另一个方法,也可以说是快速构建方法,就是通过torch.nn.Sequential,直接完成对神经网络的建立。

两种方法构建得到的神经网络结构完全相同,都可以通过print函数来打印输出网络信息,不过打印结果会有些许不同。

二、PyTorch的神经网络保存和提取

在学习和研究深度学习的时候,当我们通过一定时间的训练,得到了一个比较好的模型的时候,我们当然希望将这个模型及模型参数保存下来,以备后用,所以神经网络的保存和模型参数提取重载是很有必要的。

首先,我们需要在需要保存网路结构及其模型参数的神经网络的定义、训练部分之后通过torch.save()实现对网络结构和模型参数的保存。有两种保存方式:一是保存年整个神经网络的的结构信息和模型参数信息,save的对象是网络net;二是只保存神经网络的训练模型参数,save的对象是net.state_dict(),保存结果都以.pkl文件形式存储。

对应上面两种保存方式,重载方式也有两种。对应第一种完整网络结构信息,重载的时候通过torch.load(‘.pkl')直接初始化新的神经网络对象即可。对应第二种只保存模型参数信息,需要首先搭建相同的神经网络结构,通过net.load_state_dict(torch.load('.pkl'))完成模型参数的重载。在网络比较大的时候,第一种方法会花费较多的时间。

代码实现:

import torch from torch.autograd import Variable import matplotlib.pyplot as plt  torch.manual_seed(1) # 设定随机数种子  # 创建数据 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = x.pow(2) + 0.2*torch.rand(x.size()) x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)  # 将待保存的神经网络定义在一个函数中 def save():   # 神经网络结构   net1 = torch.nn.Sequential(     torch.nn.Linear(1, 10),     torch.nn.ReLU(),     torch.nn.Linear(10, 1),     )   optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)   loss_function = torch.nn.MSELoss()    # 训练部分   for i in range(300):     prediction = net1(x)     loss = loss_function(prediction, y)     optimizer.zero_grad()     loss.backward()     optimizer.step()    # 绘图部分   plt.figure(1, figsize=(10, 3))   plt.subplot(131)   plt.title('net1')   plt.scatter(x.data.numpy(), y.data.numpy())   plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)    # 保存神经网络   torch.save(net1, '7-net.pkl')           # 保存整个神经网络的结构和模型参数   torch.save(net1.state_dict(), '7-net_params.pkl') # 只保存神经网络的模型参数  # 载入整个神经网络的结构及其模型参数 def reload_net():   net2 = torch.load('7-net.pkl')   prediction = net2(x)    plt.subplot(132)   plt.title('net2')   plt.scatter(x.data.numpy(), y.data.numpy())   plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)  # 只载入神经网络的模型参数,神经网络的结构需要与保存的神经网络相同的结构 def reload_params():   # 首先搭建相同的神经网络结构   net3 = torch.nn.Sequential(     torch.nn.Linear(1, 10),     torch.nn.ReLU(),     torch.nn.Linear(10, 1),     )    # 载入神经网络的模型参数   net3.load_state_dict(torch.load('7-net_params.pkl'))   prediction = net3(x)    plt.subplot(133)   plt.title('net3')   plt.scatter(x.data.numpy(), y.data.numpy())   plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)  # 运行测试 save() reload_net() reload_params() 

实验结果:

PyTorch,神经网络,提取,保存

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表