本文实例讲述了Python实现的求解最小公倍数算法。分享给大家供大家参考,具体如下:
简单分析了一下,前面介绍的最大公约数的求解方法跟最小公倍数求解方法类似,只需要改一个简单的条件,然后做一点简单的其他计算。问题的解决也是基于分解质因式的程序。
程序实现以及测试case代码如下:
#!/usr/bin/pythonfrom collections import Counterdef PrimeNum(num): r_value =[] for i in range(2,num+1): for j in range(2,i): if i % j == 0: break else: r_value.append(i) return r_valuedef PrimeFactorSolve(num,prime_list): for n in prime_list: if num % n == 0: return [n,num / n]def PrimeDivisor(num): num_temp =num prime_range= PrimeNum(num) ret_value =[] while num not in prime_range: factor_list= PrimeFactorSolve(num,prime_range) ret_value.append(factor_list[0]) num =factor_list[1] else: ret_value.append(num) return Counter(ret_value)def LeastCommonMultiple(num1,num2): dict1 =PrimeDivisor(num1) dict2 =PrimeDivisor(num2) least_common_multiple= 1 for key in dict1: if key in dict2: if dict1[key] > dict2[key]: least_common_multiple*= (key ** dict1[key]) else: least_common_multiple*= (key ** dict2[key]) for key in dict1: if key not in dict2: least_common_multiple*= (key ** dict1[key]) for key in dict2: if key not in dict1: least_common_multiple*= (key ** dict2[key]) return least_common_multipleprint(LeastCommonMultiple(12,18))print(LeastCommonMultiple(7,2))print(LeastCommonMultiple(7,13))print(LeastCommonMultiple(24,56))print(LeastCommonMultiple(63,81))
程序执行结果:
E:/WorkSpace/01_编程语言/03_Python/math>pythonleast_common_multiple.py
36
14
91
168
567
通过验证,计算结果准确。
希望本文所述对大家Python程序设计有所帮助。
新闻热点
疑难解答