首页 > 编程 > Python > 正文

python 实现A*算法的示例代码

2020-01-04 14:56:35
字体:
来源:转载
供稿:网友

A*作为最常用的路径搜索算法,值得我们去深刻的研究。路径规划项目。先看一下维基百科给的算法解释:https://en.wikipedia.org/wiki/A*_search_algorithm

A *是最佳优先搜索它通过在解决方案的所有可能路径(目标)中搜索导致成本最小(行进距离最短,时间最短等)的问题来解决问题。 ),并且在这些路径中,它首先考虑那些似乎最快速地引导到解决方案的路径。它是根据加权图制定的:从图的特定节点开始,它构造从该节点开始的路径树,一次一步地扩展路径,直到其一个路径在预定目标节点处结束。

在其主循环的每次迭代中,A *需要确定将其部分路径中的哪些扩展为一个或多个更长的路径。它是基于成本(总重量)的估计仍然到达目标节点。具体而言,A *选择最小化的路径

F(N)= G(N)+ H(n)

其中n是路径上的最后一个节点,g(n)是从起始节点到n的路径的开销,h(n)是一个启发式,用于估计从n到目标的最便宜路径的开销。启发式是特定于问题的。为了找到实际最短路径的算法,启发函数必须是可接受的,这意味着它永远不会高估实际成本到达最近的目标节点。

维基百科给出的伪代码:

function A*(start, goal)  // The set of nodes already evaluated  closedSet := {}  // The set of currently discovered nodes that are not evaluated yet.  // Initially, only the start node is known.  openSet := {start}  // For each node, which node it can most efficiently be reached from.  // If a node can be reached from many nodes, cameFrom will eventually contain the  // most efficient previous step.  cameFrom := an empty map  // For each node, the cost of getting from the start node to that node.  gScore := map with default value of Infinity  // The cost of going from start to start is zero.  gScore[start] := 0  // For each node, the total cost of getting from the start node to the goal  // by passing by that node. That value is partly known, partly heuristic.  fScore := map with default value of Infinity  // For the first node, that value is completely heuristic.  fScore[start] := heuristic_cost_estimate(start, goal)  while openSet is not empty    current := the node in openSet having the lowest fScore[] value    if current = goal      return reconstruct_path(cameFrom, current)    openSet.Remove(current)    closedSet.Add(current)    for each neighbor of current      if neighbor in closedSet        continue // Ignore the neighbor which is already evaluated.      if neighbor not in openSet // Discover a new node        openSet.Add(neighbor)            // The distance from start to a neighbor      //the "dist_between" function may vary as per the solution requirements.      tentative_gScore := gScore[current] + dist_between(current, neighbor)      if tentative_gScore >= gScore[neighbor]        continue // This is not a better path.      // This path is the best until now. Record it!      cameFrom[neighbor] := current      gScore[neighbor] := tentative_gScore      fScore[neighbor] := gScore[neighbor] + heuristic_cost_estimate(neighbor, goal)   return failurefunction reconstruct_path(cameFrom, current)  total_path := {current}  while current in cameFrom.Keys:    current := cameFrom[current]    total_path.append(current)  return total_path

下面是UDACITY课程中路径规划项目,结合上面的伪代码,用python 实现A* 

import mathdef shortest_path(M,start,goal):  sx=M.intersections[start][0]  sy=M.intersections[start][1]  gx=M.intersections[goal][0]  gy=M.intersections[goal][1]   h=math.sqrt((sx-gx)*(sx-gx)+(sy-gy)*(sy-gy))  closedSet=set()  openSet=set()  openSet.add(start)  gScore={}  gScore[start]=0  fScore={}  fScore[start]=h  cameFrom={}  sumg=0  NEW=0  BOOL=False  while len(openSet)!=0:     MAX=1000    for new in openSet:      print("new",new)      if fScore[new]<MAX:        MAX=fScore[new]        #print("MAX=",MAX)        NEW=new    current=NEW    print("current=",current)    if current==goal:      return reconstruct_path(cameFrom,current)    openSet.remove(current)    closedSet.add(current)    #dafult=M.roads(current)    for neighbor in M.roads[current]:      BOOL=False      print("key=",neighbor)      a={neighbor}      if len(a&closedSet)>0:        continue      print("key is not in closeSet")      if len(a&openSet)==0:        openSet.add(neighbor)        else:        BOOL=True      x= M.intersections[current][0]      y= M.intersections[current][1]      x1=M.intersections[neighbor][0]      y1=M.intersections[neighbor][1]      g=math.sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1))      h=math.sqrt((x1-gx)*(x1-gx)+(y1-gy)*(y1-gy))             new_gScore=gScore[current]+g      if BOOL==True:        if new_gScore>=gScore[neighbor]:          continue      print("new_gScore",new_gScore)       cameFrom[neighbor]=current      gScore[neighbor]=new_gScore           fScore[neighbor] = new_gScore+h      print("fScore",neighbor,"is",new_gScore+h)      print("fScore=",new_gScore+h)          print("__________++--------------++_________")                   def reconstruct_path(cameFrom,current):  print("已到达lllll")  total_path=[]  total_path.append(current)  for key,value in cameFrom.items():    print("key",key,":","value",value)      while current in cameFrom.keys():        current=cameFrom[current]    total_path.append(current)  total_path=list(reversed(total_path))    return total_path

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表