首页 > 编程 > Python > 正文

tensorflow 打印内存中的变量方法

2020-01-04 14:49:27
字体:
来源:转载
供稿:网友

法一:

循环打印

模板

for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())): print '/n', x, y

实例

# coding=utf-8import tensorflow as tfdef func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):  bn = tf.contrib.layers.batch_norm(inputs=in_put,           decay=0.9,           is_training=is_training,           updates_collections=None) return bndef main(): with tf.Graph().as_default():  # input_x  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])  import numpy as np  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])  # outputs  output = func(input_x, 'my', is_training=True)  with tf.Session() as sess:   sess.run(tf.global_variables_initializer())   t = sess.run(output, feed_dict={input_x:i_p})   # 法一: 循环打印   for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())):    print '/n', x, yif __name__ == "__main__": main()
2017-09-29 10:10:22.714213: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)<tf.Variable 'my/BatchNorm/beta:0' shape=(1,) dtype=float32_ref> [ 0.]<tf.Variable 'my/BatchNorm/moving_mean:0' shape=(1,) dtype=float32_ref> [ 13.46412563]<tf.Variable 'my/BatchNorm/moving_variance:0' shape=(1,) dtype=float32_ref> [ 452.62246704]Process finished with exit code 0

法二:

指定变量名打印

模板

print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))

实例

# coding=utf-8import tensorflow as tfdef func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):  bn = tf.contrib.layers.batch_norm(inputs=in_put,           decay=0.9,           is_training=is_training,           updates_collections=None) return bndef main(): with tf.Graph().as_default():  # input_x  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])  import numpy as np  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])  # outputs  output = func(input_x, 'my', is_training=True)  with tf.Session() as sess:   sess.run(tf.global_variables_initializer())   t = sess.run(output, feed_dict={input_x:i_p})   # 法二: 指定变量名打印   print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))   print 'my/BatchNorm/moving_mean:0', (sess.run('my/BatchNorm/moving_mean:0'))   print 'my/BatchNorm/moving_variance:0', (sess.run('my/BatchNorm/moving_variance:0'))if __name__ == "__main__": main()
2017-09-29 10:12:41.374055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)my/BatchNorm/beta:0 [ 0.]my/BatchNorm/moving_mean:0 [ 8.08649635]my/BatchNorm/moving_variance:0 [ 368.03442383]Process finished with exit code 0

以上这篇tensorflow 打印内存中的变量方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表