首页| 新闻| 娱乐| 游戏| 科普| 文学| 编程| 系统| 数据库| 建站| 学院| 产品| 网管| 维修| 办公| 热点
我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了。
1.模型的保存
# 声明两个变量v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")init_op = tf.global_variables_initializer() # 初始化全部变量saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型with tf.Session() as sess: sess.run(init_op) print("v1:", sess.run(v1)) # 打印v1、v2的值一会读取之后对比 print("v2:", sess.run(v2)) #定义保存路径,一定要是绝对路径,且用‘/ '分隔父目录与子目录 saver_path = saver.save(sess, "C:/Users/Administrator/Desktop/tt/model.ckpt") # 将模型保存到save/model.ckpt文件 print("Model saved in file:", saver_path)
2.模型的读取
直接读取模型时,可能会报错,我是用Spyder编译的,可以把Spyder关掉,再重新打开,就可以读取数据了。原因可能是:在模型保存时将变量初始化了。
import tensorflow as tf# 使用和保存模型代码中一样的方式来声明变量v1 = tf.Variable(tf.random_normal([1, 2]), name="v1")v2 = tf.Variable(tf.random_normal([2, 3]), name="v2")saver = tf.train.Saver() # 声明tf.train.Saver类用于保存模型with tf.Session() as sess: saver.restore(sess, "C:/Users/Administrator/Desktop/tt/model.ckpt") # 即将固化到硬盘中的Session从保存路径再读取出来 print("v1:", sess.run(v1)) # 打印v1、v2的值和之前的进行对比 print("v2:", sess.run(v2)) print("Model Restored")
以上这篇对tensorflow 的模型保存和调用实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持VEVB武林网。
手机内存不足怎么清理 手机提
怎样设置虚拟内存?
解决内存不足妙方
芭蕾舞蹈表演,真实美到极致
下午茶时间,悠然自得的休憩
漫天大雪天空飞舞展现最美雪景
充斥这繁华奢靡气息的城市迪拜风景图片
肉食主义者的最爱美食烤肉图片
夏日甜心草莓美食图片
人逢知己千杯少,喝酒搞笑图集
搞笑试卷,学生恶搞答题
新闻热点
疑难解答
图片精选
Python入门基础教程 超详细1小时学
python连接MySQL数据库实例分析
wxPython定时器wx.Timer简单应用实
浅谈python中截取字符函数strip,lst
网友关注