首页 > 编程 > Python > 正文

使用tensorflow实现线性svm

2020-01-04 14:34:22
字体:
来源:转载
供稿:网友

本文实例为大家分享了tensorflow实现线性svm的具体代码,供大家参考,具体内容如下

简单方法:

import tensorflow as tfimport numpy as npfrom matplotlib import pyplot as pltdef placeholder_input():  x=tf.placeholder('float',shape=[None,2],name='x_batch')  y=tf.placeholder('float',shape=[None,1],name='y_batch')  return x,ydef get_base(_nx, _ny):  _xf = np.linspace(x_min, x_max, _nx)  _yf = np.linspace(y_min, y_max, _ny)  xf1, yf1 = np.meshgrid(_xf, _yf)  n_xf,n_yf=np.hstack((xf1)),np.hstack((yf1))  return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]x_data=np.load('x.npy')y1=np.load('y.npy')y_data=np.reshape(y1,[200,1])step=10000tol=1e-3x,y=placeholder_input()w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")b = tf.Variable(0., dtype=tf.float32, name="b_v")y_pred =tf.matmul(x,w)+b y_predict =tf.sign( tf.matmul(x,w)+b )# cost = ∑_(i=1)^N max⁡(1-y_i⋅(w⋅x_i+b),0)+1/2 + 0.5 * ‖w‖^2cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-y*y_pred,0))train_step = tf.train.AdamOptimizer(0.01).minimize(cost)with tf.Session() as sess:  sess.run(tf.global_variables_initializer())  for i in range(step):    sess.run(train_step,feed_dict={x:x_data,y:y_data})    y_p,y_p1,loss,w_value,b_value=sess.run([y_predict,y_pred,cost,w,b],feed_dict={x:x_data,y:y_data})x_min, y_min = np.minimum.reduce(x_data,axis=0) -2x_max, y_max = np.maximum.reduce(x_data,axis=0) +2xf, yf , matrix_= get_base(200, 200)#xy_xf, xy_yf = np.meshgrid(xf, yf, sparse=True)z=np.sign(np.matmul(matrix_,w_value)+b_value).reshape((200,200))plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)for i in range(200):  if y_p[i,0]==1.0:    plt.scatter(x_data[i,0],x_data[i,1],color='r')  else:    plt.scatter(x_data[i,0],x_data[i,1],color='g')plt.axis([x_min,x_max,y_min ,y_max])#plt.contour(xf, yf, z)plt.show()  

       进阶:

import tensorflow as tfimport numpy as npfrom matplotlib import pyplot as pltclass SVM():  def __init__(self):    self.x=tf.placeholder('float',shape=[None,2],name='x_batch')    self.y=tf.placeholder('float',shape=[None,1],name='y_batch')    self.sess=tf.Session()  @staticmethod  def get_base(self,_nx, _ny):    _xf = np.linspace(self.x_min, self.x_max, _nx)    _yf = np.linspace(self.y_min, self.y_max, _ny)    n_xf, n_yf = np.meshgrid(_xf, _yf)    return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]  def readdata(self):    x_data=np.load('x.npy')    y1=np.load('y.npy')    y_data=np.reshape(y1,[200,1])    return x_data ,y_data  def train(self,step,x_data,y_data):    w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")    b = tf.Variable(0., dtype=tf.float32, name="b_v")    self.y_pred =tf.matmul(self.x,w)+b     cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-self.y*self.y_pred,0))    train_step = tf.train.AdamOptimizer(0.01).minimize(cost)    self.y_predict =tf.sign( tf.matmul(self.x,w)+b )    self.sess.run(tf.global_variables_initializer())    for i in range(step):            self.sess.run(train_step,feed_dict={self.x:x_data,self.y:y_data})      self.y_predict_value,self.w_value,self.b_value,cost_value=self.sess.run([self.y_predict,w,b,cost],feed_dict={self.x:x_data,self.y:y_data})      print('**********cost=%f***********'%cost_value)  def predict(self,y_data):        correct = tf.equal(self.y_predict_value, y_data)    precision=tf.reduce_mean(tf.cast(correct, tf.float32))     precision_value=self.sess.run(precision)    return precision_value  def drawresult(self,x_data):    self.x_min, self.y_min = np.minimum.reduce(x_data,axis=0) -2    self.x_max, self.y_max = np.maximum.reduce(x_data,axis=0) +2    xf, yf , matrix_= self.get_base(self,200, 200)    w_value=self.w_value    b_value=self.b_value    print(w_value,b_value)    z=np.sign(np.matmul(matrix_,self.w_value)+self.b_value).reshape((200,200))    plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)    for i in range(200):      if self.y_predict_value[i,0]==1.0:        plt.scatter(x_data[i,0],x_data[i,1],color='r')      else:        plt.scatter(x_data[i,0],x_data[i,1],color='g')    plt.axis([self.x_min,self.x_max,self.y_min ,self.y_max])    #plt.contour(xf, yf, z)    plt.show()     svm=SVM()x_data,y_data=svm.readdata()svm.train(5000,x_data,y_data)precision_value=svm.predict(y_data)svm.drawresult(x_data)

没有数据的可以用这个

import tensorflow as tfimport numpy as npfrom matplotlib import pyplot as pltclass SVM():  def __init__(self):    self.x=tf.placeholder('float',shape=[None,2],name='x_batch')    self.y=tf.placeholder('float',shape=[None,1],name='y_batch')    self.sess=tf.Session()  def creat_dataset(self,size, n_dim=2, center=0, dis=2, scale=1, one_hot=False):    center1 = (np.random.random(n_dim) + center - 0.5) * scale + dis    center2 = (np.random.random(n_dim) + center - 0.5) * scale - dis    cluster1 = (np.random.randn(size, n_dim) + center1) * scale    cluster2 = (np.random.randn(size, n_dim) + center2) * scale    x_data = np.vstack((cluster1, cluster2)).astype(np.float32)    y_data = np.array([1] * size + [-1] * size)    indices = np.random.permutation(size * 2)    x_data, y_data = x_data[indices], y_data[indices]    y_data=np.reshape(y_data,(y_data.shape[0],1))    if not one_hot:      return x_data, y_data    y_data = np.array([[0, 1] if label == 1 else [1, 0] for label in y_data], dtype=np.int8)    return x_data, y_data  @staticmethod  def get_base(self,_nx, _ny):    _xf = np.linspace(self.x_min, self.x_max, _nx)    _yf = np.linspace(self.y_min, self.y_max, _ny)    n_xf, n_yf = np.meshgrid(_xf, _yf)    return _xf, _yf,np.c_[n_xf.ravel(), n_yf.ravel()]#  def readdata(self):#    #    x_data=np.load('x.npy')#    y1=np.load('y.npy')#    y_data=np.reshape(y1,[200,1])#    return x_data ,y_data  def train(self,step,x_data,y_data):    w = tf.Variable(np.ones([2,1]), dtype=tf.float32, name="w_v")    b = tf.Variable(0., dtype=tf.float32, name="b_v")    self.y_pred =tf.matmul(self.x,w)+b     cost = tf.nn.l2_loss(w)+tf.reduce_sum(tf.maximum(1-self.y*self.y_pred,0))    train_step = tf.train.AdamOptimizer(0.01).minimize(cost)    self.y_predict =tf.sign( tf.matmul(self.x,w)+b )    self.sess.run(tf.global_variables_initializer())    for i in range(step):      index=np.random.permutation(y_data.shape[0])      x_data1, y_data1 = x_data[index], y_data[index]      self.sess.run(train_step,feed_dict={self.x:x_data1[0:50],self.y:y_data1[0:50]})      self.y_predict_value,self.w_value,self.b_value,cost_value=self.sess.run([self.y_predict,w,b,cost],feed_dict={self.x:x_data,self.y:y_data})      if i%1000==0:print('**********cost=%f***********'%cost_value)  def predict(self,y_data):        correct = tf.equal(self.y_predict_value, y_data)    precision=tf.reduce_mean(tf.cast(correct, tf.float32))     precision_value=self.sess.run(precision)    return precision_value, self.y_predict_value  def drawresult(self,x_data):    self.x_min, self.y_min = np.minimum.reduce(x_data,axis=0) -2    self.x_max, self.y_max = np.maximum.reduce(x_data,axis=0) +2    xf, yf , matrix_= self.get_base(self,200, 200)    print(self.w_value,self.b_value)    z=np.sign(np.matmul(matrix_,self.w_value)+self.b_value).reshape((200,200))    plt.pcolormesh(xf, yf, z, cmap=plt.cm.Paired)    for i in range(x_data.shape[0]):      if self.y_predict_value[i,0]==1.0:        plt.scatter(x_data[i,0],x_data[i,1],color='r')      else:        plt.scatter(x_data[i,0],x_data[i,1],color='g')    plt.axis([self.x_min,self.x_max,self.y_min ,self.y_max])#    plt.contour(xf, yf, z)    plt.show()     svm=SVM()x_data,y_data=svm.creat_dataset(size=200, n_dim=2, center=0, dis=4, one_hot=False)svm.train(5000,x_data,y_data)precision_value,y_predict_value=svm.predict(y_data)svm.drawresult(x_data)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表