首页 > 编程 > Python > 正文

tensorflow实现加载mnist数据集

2020-01-04 14:33:50
字体:
来源:转载
供稿:网友

mnist作为最基础的图片数据集,在以后的cnn,rnn任务中都会用到

import numpy as npimport tensorflow as tfimport matplotlib.pyplot as pltfrom tensorflow.examples.tutorials.mnist import input_data#数据集存放地址,采用0-1编码mnist = input_data.read_data_sets('F:/mnist/data/',one_hot = True)print(mnist.train.num_examples)print(mnist.test.num_examples)trainimg = mnist.train.imagestrainlabel = mnist.train.labelstestimg = mnist.test.imagestestlabel = mnist.test.labels#打印相关信息print(type(trainimg))print(trainimg.shape,)print(trainlabel.shape,)print(testimg.shape,)print(testlabel.shape,)nsample = 5randidx = np.random.randint(trainimg.shape[0],size = nsample)#输出几张数字的图for i in randidx:  curr_img = np.reshape(trainimg[i,:],(28,28))  curr_label = np.argmax(trainlabel[i,:])  plt.matshow(curr_img,cmap=plt.get_cmap('gray'))  plt.title(""+str(i)+"th Training Data"+"label is"+str(curr_label))  print(""+str(i)+"th Training Data"+"label is"+str(curr_label))  plt.show()

程序运行结果如下:

Extracting F:/mnist/data/train-images-idx3-ubyte.gzExtracting F:/mnist/data/train-labels-idx1-ubyte.gzExtracting F:/mnist/data/t10k-images-idx3-ubyte.gzExtracting F:/mnist/data/t10k-labels-idx1-ubyte.gz5500010000<class 'numpy.ndarray'>(55000, 784)(55000, 10)(10000, 784)(10000, 10)52636th 

输出的图片如下:

Training Datalabel is9

tensorflow,加载,mnist,数据集

下面还有四张其他的类似图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表