前几天有一个需求,透视表中的年级这一列要按照一年级,二年级这样的序列进行排序,但是用过透视表的人都知道,透视表对中文的排序不是太理想,放弃pandas自带的排序方法。测试了很久,想到一个办法。先把dataframe中需要特殊排序的列中的汉字转换成数字,然后生成透视表,生成透视表之后,再把透视表的index或者columns中的数字替换成相应的汉字,透视表的结果就会按照你想要的顺序进行排序。
def get_special_sort_data(self, groupby, columns): # 获取需要特殊处理的字段的信息 special_sort_cols = None cols_in_index_or_column = None # 判断特殊排序字段在index还是column中 if self.datasource.has_special_sort_cols: # 获取表需要处理的特殊字段信息 special_sort_cols = self.datasource.get_sort_columns() # {"grade_name": {}} if special_sort_cols: i_intersection = list(set(groupby) & set(special_sort_cols.keys())) c_intersection = list(set(columns) & set(special_sort_cols.keys())) if i_intersection: cols_in_index_or_column = ('index', i_intersection) elif c_intersection: cols_in_index_or_column = ('column', c_intersection) return cols_in_index_or_column, special_sort_colscols_in_index_or_column, special_sort_cols = self.get_special_sort_data(groupby, columns) # special_sort_cols:{"grade_name": {"一年级": 1, "二年级":2, "三年级": 3 ....}}if cols_in_index_or_column: for col in cols_in_index_or_column[1]: df[col] = df[col].replace(special_sort_cols.get(col)) # 替换df# 获取透视表if cols_in_index_or_column: if cols_in_index_or_column[0] == 'index': if len(groupby) == 1: col_name = cols_in_index_or_column[1][0] sort_info = special_sort_cols.get(col_name) r_sort_info = {v:k for k, v in zip(sort_info.keys(), sort_info.values())} index_1 = df.index.tolist() index_1 = [r_sort_info.get(item) for item in index_1] df.index = Index(index_1, name=df.index.name) else: for item in cols_in_index_or_column[1]: ix = df.index.names.index(item) index_1 = df.index.levels[ix].tolist() sort_info = special_sort_cols.get(item) r_sort_info = {v: k for k, v in zip(sort_info.keys(), sort_info.values())} index_1 = [r_sort_info.get(item) for item in index_1] df.index = df.index.set_levels(index_1, level=ix) else: for item in cols_in_index_or_column[1]: ix = df.columns.names.index(item) col_1 = df.columns.levels[ix].tolist() sort_info = special_sort_cols.get(item) r_sort_info = {v: k for k, v in zip(sort_info.keys(), sort_info.values())} col_1 = [r_sort_info.get(item) for item in col_1] df.columns = df.columns.set_levels(col_1, level=ix)