首页 > 编程 > Python > 正文

Python 中 function(#) (X)格式 和 (#)在Python3.*中的注意事项

2020-01-04 13:57:22
字体:
来源:转载
供稿:网友

python 的语法定义和C++、matlab、java 还是很有区别的。

1. 括号与函数调用

def devided_3(x):   return x/3.

print(a)    #不带括号调用的结果:<function a at 0x139c756a8>
print(a(3)) #带括号调用的结果:1

不带括号时,调用的是函数在内存在的首地址; 带括号时,调用的是函数在内存区的代码块,输入参数后执行函数体。

2. 括号与类调用

class test():  y = 'this is out of __init__()'  def __init__(self):    self.y = 'this is in the __init__()' x = test  # x是类位置的首地址print(x.y) # 输出类的内容:this is out of __init__()x = test() # 类的实例化print(x.y) # 输出类的属性:this is in the __init__() ;

3. function(#) (input)

def With_func_rtn(a):  print("this is func with another func as return")  print(a)  def func(b):    print("this is another function")    print(b)  return funcfunc(2018)(11)>>> this is func with another func as return  2018  this is another function  11

其实,这种情况最常用在卷积神经网络中:

def model(input_shape):  # Define the input placeholder as a tensor with shape input_shape.  X_input = Input(input_shape)  # Zero-Padding: pads the border of X_input with zeroes  X = ZeroPadding2D((3, 3))(X_input)  # CONV -> BN -> RELU Block applied to X  X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X)  X = BatchNormalization(axis = 3, name = 'bn0')(X)  X = Activation('relu')(X)  # MAXPOOL  X = MaxPooling2D((2, 2), name='max_pool')(X)  # FLATTEN X (means convert it to a vector) + FULLYCONNECTED  X = Flatten()(X)  X = Dense(1, activation='sigmoid', name='fc')(X)  # Create model. This creates your Keras model instance, you'll use this instance to train/test the model.  model = Model(inputs = X_input, outputs = X, name='HappyModel')  return model

总结

以上所述是小编给大家介绍的Python 中 function(#) (X)格式 和 (#)在Python3.*中的注意,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对VEVB武林网网站的支持!


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表