首页 > 编程 > Python > 正文

在python中利用KNN实现对iris进行分类的方法

2020-01-04 13:51:34
字体:
来源:转载
供稿:网友

如下所示:

from sklearn.datasets import load_iris iris = load_iris() print iris.data.shape from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size = 0.25, random_state = 33) from sklearn.preprocessing import StandardScalerfrom sklearn.neighbors import KNeighborsClassifier ss = StandardScaler() X_train = ss.fit_transform(X_train)X_test = ss.transform(X_test) knc = KNeighborsClassifier()knc.fit(X_train, y_train)y_predict = knc.predict(X_test) print 'The accuracy of K-Nearest Neighbor Classifier is: ', knc.score(X_test, y_test) from sklearn.metrics import classification_report print classification_report(y_test, y_predict, target_names = iris.target_names)

以上这篇在python中利用KNN实现对iris进行分类的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表