定义一个矩阵初等行变换的类
class rowTransformation(): array = ([[],[]]) def __init__(self,array): self.array = array def __mul__(self, other): pass # 交换矩阵的两行 def exchange_two_lines(self,x,y): a = self.array[x-1:x].copy() self.array[x-1:x] = self.array[y-1:y] self.array[y-1:y] = a return self.array # 以k不等于0乘以矩阵中的某x行 def multiply(k,x,self): self.array[x-1:x] = k*self.array[x-1:x] return self.array # 把x行所有元的k倍加到另y行上去 def k_mul_arr_add_arr(self,k,x,y): self.array[y-1:y] += k*self.array[x-1:x] return self.array
定义一个初等列变换的类
# 封装一个初等列变换类class colTransformation(): array = ([[],[]]) def __init__(self, array): self.array = array def __mul__(self, other): pass # 交换矩阵的两列 def exchange_two_lines(self, x, y): a = self.array[:, x-1:x].copy() self.array[:, x-1:x] = self.array[:, y-1:y] self.array[:, y-1:y] = a return self.array # 以k不等于0乘以矩阵中的某x列 def multiply(self, k, x): self.array[:, x-1:x] = k*self.array[:, x-1:x] return self.array # 把x列所有元的k倍加到另y列上去 def k_mul_arr_add_arr(self, k, x, y): self.array[:, y-1:y] += k*self.array[:, x-1:x] return self.array
求矩阵的秩
b = np.array([[2,-1,-1,1,2],[1,1,-2,1,4],[4,-6,2,-2,4],[3,6,-9,7,9]])a = np.linalg.matrix_rank(b)print(a)3
求非齐次线性方程组的解
以上这篇Python解决线性代数问题之矩阵的初等变换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持VEVB武林网。
注:相关教程知识阅读请移步到python教程频道。