首页 > 编程 > Python > 正文

python用fsolve、leastsq对非线性方程组求解

2020-01-04 13:48:37
字体:
来源:转载
供稿:网友

背景:

实现用python的optimize库的fsolve对非线性方程组进行求解。可以看到这一个问题实际上还是一个优化问题,也可以用之前拟合函数的leastsq求解。下面用这两个方法进行对比:

代码:

from scipy.optimize import fsolve,leastsqfrom math import sin,cos def f(x): x0 = float(x[0]) x1 = float(x[1]) x2 = float(x[2]) return [ 5*x1+3, 4*x0*x0 - 2*sin(x1*x2), x1*x2-1.5 ] x0 = [1,1,1]result = fsolve(f,x0) print("===================")print()print("求解函数名称:",fsolve.__name__)print("解:",result)print("各向量值:",f(result))#拟合函数来求解h = leastsq(f,x0) print("===================")print()print("求解函数名称:",leastsq.__name__)print("解:",h[0])print("各向量的值:",f(h[0]))

结果:

===================


求解函数名称: fsolve
解: [-0.70622057 -0.6        -2.5       ]
各向量值: [0.0, -9.126033262418787e-14, 5.329070518200751e-15]
===================


求解函数名称: leastsq
解: [-0.70622057 -0.6        -2.5       ]
各向量的值: [0.0, -2.220446049250313e-16, 0.0]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表