首页 > 编程 > Python > 正文

python实现求特征选择的信息增益

2020-01-04 13:47:06
字体:
来源:转载
供稿:网友

使用python语言,实现求特征选择的信息增益,可以同时满足特征中有连续型和二值离散型属性的情况。

师兄让我做一个特征选择的代码,我在网上找了一下,大部分都是用来求离散型属性的信息益益,但是我的数据是同时包含二值离散型和连续型属性的,所以这里实现了一下。

代码块

import numpy as npimport mathclass IG():  def __init__(self,X,y):    X = np.array(X)    n_feature = np.shape(X)[1]    n_y = len(y)    orig_H = 0    for i in set(y):      orig_H += -(y.count(i)/n_y)*math.log(y.count(i)/n_y)    condi_H_list = []    for i in range(n_feature):      feature = X[:,i]      sourted_feature = sorted(feature)      threshold = [(sourted_feature[inde-1]+sourted_feature[inde])/2 for inde in range(len(feature)) if inde != 0 ]      thre_set = set(threshold)      if float(max(feature)) in thre_set:        thre_set.remove(float(max(feature)))      if min(feature) in thre_set:        thre_set.remove(min(feature))      pre_H = 0      for thre in thre_set:        lower = [y[s] for s in range(len(feature)) if feature[s] < thre]        highter = [y[s] for s in range(len(feature)) if feature[s] > thre]        H_l = 0        for l in set(lower):          H_l += -(lower.count(l) / len(lower))*math.log(lower.count(l) / len(lower))        H_h = 0        for h in set(highter):          H_h += -(highter.count(h) / len(highter))*math.log(highter.count(h) / len(highter))        temp_condi_H = len(lower)/n_y *H_l+ len(highter)/n_y * H_h        condi_H = orig_H - temp_condi_H        pre_H = max(pre_H,condi_H)      condi_H_list.append(pre_H)    self.IG = condi_H_list  def getIG(self):    return self.IGif __name__ == "__main__":  X = [[1, 0, 0, 1],     [0, 1, 1, 1],     [0, 0, 1, 0]]  y = [0, 0, 1]  print(IG(X,y).getIG())

输出结果为:

[0.17441604792151594, 0.17441604792151594, 0.17441604792151594, 0.6365141682948128]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持VEVB武林网。


注:相关教程知识阅读请移步到python教程频道。
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表