# -*- coding:utf-8 -*-import numpy as npimport matplotlib.pyplot as pltfrom scipy import optimize#直线方程函数def f_1(x, A, B): return A*x + B#二次曲线方程def f_2(x, A, B, C): return A*x*x + B*x + C#三次曲线方程def f_3(x, A, B, C, D): return A*x*x*x + B*x*x + C*x + Ddef plot_test(): plt.figure() #拟合点 x0 = [1, 2, 3, 4, 5] y0 = [1, 3, 8, 18, 36] #绘制散点 plt.scatter(x0[:], y0[:], 25, "red") #直线拟合与绘制 A1, B1 = optimize.curve_fit(f_1, x0, y0)[0] x1 = np.arange(0, 6, 0.01) y1 = A1*x1 + B1 plt.plot(x1, y1, "blue") #二次曲线拟合与绘制 A2, B2, C2 = optimize.curve_fit(f_2, x0, y0)[0] x2 = np.arange(0, 6, 0.01) y2 = A2*x2*x2 + B2*x2 + C2 plt.plot(x2, y2, "green") #三次曲线拟合与绘制 A3, B3, C3, D3= optimize.curve_fit(f_3, x0, y0)[0] x3 = np.arange(0, 6, 0.01) y3 = A3*x3*x3*x3 + B3*x3*x3 + C3*x3 + D3 plt.plot(x3, y3, "purple") plt.title("www.vevb.com test") plt.xlabel('x') plt.ylabel('y') plt.show() returnplot_test()
def f_gauss(x, A, B, C, sigma): return A*np.exp(-(x-B)**2/(2*sigma**2)) + C