首页 > 编程 > Java > 正文

JAVA实现链表面试题

2019-11-26 15:00:12
字体:
来源:转载
供稿:网友

这份笔记整理了整整一个星期,每一行代码都是自己默写完成,并测试运行成功,同时也回顾了一下《剑指offer》这本书中和链表有关的讲解,希望对笔试和面试有所帮助。

本文包含链表的以下内容:

  1、单链表的创建和遍历

  2、求单链表中节点的个数

  3、查找单链表中的倒数第k个结点(剑指offer,题15)

  4、查找单链表中的中间结点

  5、合并两个有序的单链表,合并之后的链表依然有序【出现频率高】(剑指offer,题17)

  6、单链表的反转【出现频率最高】(剑指offer,题16)

  7、从尾到头打印单链表(剑指offer,题5)

  8、判断单链表是否有环

  9、取出有环链表中,环的长度

  10、单链表中,取出环的起始点(剑指offer,题56)。本题需利用上面的第8题和第9题。

  11、判断两个单链表相交的第一个交点(剑指offer,题37)

1、单链表的创建和遍历:

 public class LinkList { public Node head; public Node current;  //方法:向链表中添加数据 public void add(int data) {  //判断链表为空的时候  if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点  head = new Node(data);  current = head;  } else {  //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)  current.next = new Node(data);  //把链表的当前索引向后移动一位  current = current.next; //此步操作完成之后,current结点指向新添加的那个结点  } }  //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历 public void print(Node node) {  if (node == null) {  return;  }  current = node;  while (current != null) {  System.out.println(current.data);  current = current.next;  } }   class Node { //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。  int data; //数据域  Node next;//指针域   public Node(int data) {  this.data = data; } }   public static void main(String[] args) { LinkList list = new LinkList(); //向LinkList中添加数据  for (int i = 0; i < 10; i++) {  list.add(i);  }   list.print(list.head);// 从head节点开始遍历输出 }  }

上方代码中,这里面的Node节点采用的是内部类来表示(33行)。使用内部类的最大好处是可以和外部类进行私有操作的互相访问。

注:内部类访问的特点是:内部类可以直接访问外部类的成员,包括私有;外部类要访问内部类的成员,必须先创建对象。

为了方便添加和遍历的操作,在LinkList类中添加一个成员变量current,用来表示当前节点的索引(03行)。

这里面的遍历链表的方法(20行)中,参数node表示从node节点开始遍历,不一定要从head节点遍历。

 

2、求单链表中节点的个数:

注意检查链表是否为空。时间复杂度为O(n)。这个比较简单。

核心代码:

 //方法:获取单链表的长度 public int getLength(Node head) {  if (head == null) {  return 0;  }   int length = 0;  Node current = head;  while (current != null) {  length++;  current = current.next;  }   return length; }

3、查找单链表中的倒数第k个结点:

3.1  普通思路:

先将整个链表从头到尾遍历一次,计算出链表的长度size,得到链表的长度之后,就好办了,直接输出第(size-k)个节点就可以了(注意链表为空,k为0,k为1,k大于链表中节点个数时的情况

)。时间复杂度为O(n),大概思路如下:

 public int findLastNode(int index) { //index代表的是倒数第index的那个结点   //第一次遍历,得到链表的长度size  if (head == null) {  return -1;  }   current = head;  while (current != null) {  size++;  current = current.next; }  //第二次遍历,输出倒数第index个结点的数据  current = head;  for (int i = 0; i < size - index; i++) {  current = current.next;  }  return current.data; }

如果面试官不允许你遍历链表的长度,该怎么做呢?接下来就是。

 3.2  改进思路:(这种思路在其他题目中也有应用)

     这里需要声明两个指针:即两个结点型的变量first和second,首先让first和second都指向第一个结点,然后让second结点往后挪k-1个位置,此时first和second就间隔了k-1个位置,然后整体向后移动这两个节点,直到second节点走到最后一个结点的时候,此时first节点所指向的位置就是倒数第k个节点的位置。时间复杂度为O(n)

代码实现:(初版)

 public Node findLastNode(Node head, int index) {   if (node == null) {  return null;  }   Node first = head;  Node second = head;   //让second结点往后挪index个位置  for (int i = 0; i < index; i++) {  second = second.next;  }   //让first和second结点整体向后移动,直到second结点为Null while (second != null) {  first = first.next;  second = second.next;  }   //当second结点为空的时候,此时first指向的结点就是我们要找的结点 return first; }

代码实现:(最终版)(考虑k大于链表中结点个数时的情况时,抛出异常)

上面的代码中,看似已经实现了功能,其实还不够健壮:

  要注意k等于0的情况;

  如果k大于链表中节点个数时,就会报空指针异常,所以这里需要做一下判断。

核心代码如下:

   

 public Node findLastNode(Node head, int k) { if (k == 0 || head == null) {  return null;  }   Node first = head;  Node second = head;  //让second结点往后挪k-1个位置  for (int i = 0; i < k - 1; i++) {  System.out.println("i的值是" + i);  second = second.next;  if (second == null) { //说明k的值已经大于链表的长度了  //throw new NullPointerException("链表的长度小于" + k); //我们自己抛出异常,给用户以提示   return null;  } }  //让first和second结点整体向后移动,直到second走到最后一个结点  while (second.next != null) {  first = first.next;  second = second.next;  }  //当second结点走到最后一个节点的时候,此时first指向的结点就是我们要找的结点 return first; }

 

4、查找单链表中的中间结点:

同样,面试官不允许你算出链表的长度,该怎么做呢?

思路:

    和上面的第2节一样,也是设置两个指针first和second,只不过这里是,两个指针同时向前走,second指针每次走两步,first指针每次走一步,直到second指针走到最后一个结点时,此时first指针所指的结点就是中间结点。注意链表为空,链表结点个数为1和2的情况。时间复杂度为O(n)。

代码实现:

  

 //方法:查找链表的中间结点 public Node findMidNode(Node head) { if (head == null) {  return null; } Node first = head;  Node second = head; //每次移动时,让second结点移动两位,first结点移动一位 while (second != null && second.next != null) {  first = first.next;  second = second.next.next; }  //直到second结点移动到null时,此时first指针指向的位置就是中间结点的位置  return first; }

上方代码中,当n为偶数时,得到的中间结点是第n/2 + 1个结点。比如链表有6个节点时,得到的是第4个节点。

 

5、合并两个有序的单链表,合并之后的链表依然有序:

    这道题经常被各公司考察。

例如:

链表1:

  1->2->3->4

链表2:

  2->3->4->5

合并后:

  1->2->2->3->3->4->4->5

解题思路:

  挨着比较链表1和链表2。

  这个类似于归并排序。尤其要注意两个链表都为空、和其中一个为空的情况。只需要O (1) 的空间。时间复杂度为O (max(len1,len2))

代码实现:

 //两个参数代表的是两个链表的头结点 public Node mergeLinkList(Node head1, Node head2) { if (head1 == null && head2 == null) { //如果两个链表都为空  return null; }  if (head1 == null) {  return head2; }  if (head2 == null) {  return head1; }  Node head; //新链表的头结点  Node current; //current结点指向新链表  // 一开始,我们让current结点指向head1和head2中较小的数据,得到head结点  if (head1.data < head2.data) {  head = head1;  current = head1;  head1 = head1.next;  } else {  head = head2;  current = head2;  head2 = head2.next; }   while (head1 != null && head2 != null) {  if (head1.data < head2.data) {   current.next = head1; //新链表中,current指针的下一个结点对应较小的那个数据   current = current.next; //current指针下移   head1 = head1.next;  } else {  current.next = head2;   current = current.next;   head2 = head2.next;  }  }   //合并剩余的元素  if (head1 != null) { //说明链表2遍历完了,是空的  current.next = head1;  } if (head2 != null) { //说明链表1遍历完了,是空的  current.next = head2; }   return head; }

代码测试:

 public static void main(String[] args) { LinkList list1 = new LinkList(); LinkList list2 = new LinkList(); //向LinkList中添加数据 for (int i = 0; i < 4; i++) {  list1.add(i);  } for (int i = 3; i < 8; i++) {  list2.add(i); } LinkList list3 = new LinkList(); list3.head = list3.mergeLinkList(list1.head, list2.head); //将list1和list2合并,存放到list3中  list3.print(list3.head);// 从head节点开始遍历输出 }

上方代码中用到的add方法和print方法和第1小节中是一致的。

运行效果:

注:《剑指offer》中是用递归解决的,感觉有点难理解。

 

6、单链表的反转:【出现频率最高】

例如链表:

  1->2->3->4

反转之后:

  4->2->2->1

思路:

  从头到尾遍历原链表,每遍历一个结点,将其摘下放在新链表的最前端。注意链表为空和只有一个结点的情况。时间复杂度为O(n)

方法1:(遍历)

  

 //方法:链表的反转 public Node reverseList(Node head) { //如果链表为空或者只有一个节点,无需反转,直接返回原链表的头结点  if (head == null || head.next == null) {  return head; } Node current = head; Node next = null; //定义当前结点的下一个结点  Node reverseHead = null; //反转后新链表的表头  while (current != null) {  next = current.next; //暂时保存住当前结点的下一个结点,因为下一次要用   current.next = reverseHead; //将current的下一个结点指向新链表的头结点  reverseHead = current;   current = next; // 操作结束后,current节点后移 }  return reverseHead; }

上方代码中,核心代码是第16、17行。

方法2:(递归)

这个方法有点难,先不讲了。

7、从尾到头打印单链表:

  对于这种颠倒顺序的问题,我们应该就会想到栈,后进先出。所以,这一题要么自己使用栈,要么让系统使用栈,也就是递归。注意链表为空的情况。时间复杂度为O(n)

  注:不要想着先将单链表反转,然后遍历输出,这样会破坏链表的结构,不建议。

方法1:(自己新建一个栈)

 //方法:从尾到头打印单链表 public void reversePrint(Node head) {  if (head == null) {  return;  }   Stack<Node> stack = new Stack<Node>(); //新建一个栈  Node current = head;   //将链表的所有结点压栈  while (current != null) {-  stack.push(current); //将当前结点压栈  current = current.next; }  //将栈中的结点打印输出即可 while (stack.size() > 0) {  System.out.println(stack.pop().data); //出栈操作 } }

方法2:(使用系统的栈:递归,代码优雅简洁)

   

 public void reversePrint(Node head) {    if (head == null) {  return;  } reversePrint(head.next); System.out.println(head.data); }

总结:方法2是基于递归实现的,戴安看起来简洁优雅,但有个问题:当链表很长的时候,就会导致方法调用的层级很深,有可能造成栈溢出。而方法1的显式用栈,是基于循环实现的,代码的鲁棒性要更好一些。

8、判断单链表是否有环:

  这里也是用到两个指针,如果一个链表有环,那么用一个指针去遍历,是永远走不到头的。

  因此,我们用两个指针去遍历:first指针每次走一步,second指针每次走两步,如果first指针和second指针相遇,说明有环。时间复杂度为O (n)。

方法:

  

 //方法:判断单链表是否有环 public boolean hasCycle(Node head) {   if (head == null) {  return false;  }   Node first = head;  Node second = head;   while (second != null) {  first = first.next; //first指针走一步  second = second.next.next; second指针走两步   if (first == second) { //一旦两个指针相遇,说明链表是有环的   return true;  } }   return false; }

完整版代码:(包含测试部分)

这里,我们还需要加一个重载的add(Node node)方法,在创建单向循环链表时要用到。

LinkList.java: public class LinkList { public Node head; public Node current;  //方法:向链表中添加数据 public void add(int data) {  //判断链表为空的时候  if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点  head = new Node(data);  current = head; } else {  //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)  current.next = new Node(data);  //把链表的当前索引向后移动一位  current = current.next;  } }   //方法重载:向链表中添加结点 public void add(Node node) {  if (node == null) {  return;  }   if (head == null) {  head = node;  current = head;  } else {  current.next = node;  current = current.next;  } }   //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历 public void print(Node node) {  if (node == null) {  return;  }   current = node;  while (current != null) {  System.out.println(current.data);  current = current.next;  } }  //方法:检测单链表是否有环 public boolean hasCycle(Node head) {   if (head == null) {  return false;  }   Node first = head;  Node second = head;   while (second != null) {  first = first.next; //first指针走一步  second = second.next.next; //second指针走两步   if (first == second) { //一旦两个指针相遇,说明链表是有环的   return true;  }  }   return false; }  class Node {  //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。  int data; //数据域  Node next;//指针域   public Node(int data) {  this.data = data;  } }  public static void main(String[] args) {  LinkList list = new LinkList();  //向LinkList中添加数据  for (int i = 0; i < 4; i++) {  list.add(i);  }   list.add(list.head); //将头结点添加到链表当中,于是,单链表就有环了。备注:此时得到的这个环的结构,是下面的第8小节中图1的那种结构。   System.out.println(list.hasCycle(list.head)); } }

检测单链表是否有环的代码是第50行。

88行:我们将头结点继续往链表中添加,此时单链表就环了。最终运行效果为true。

如果删掉了88行代码,此时单链表没有环,运行效果为false。

 

9、取出有环链表中,环的长度:

我们平时碰到的有环链表是下面的这种:(图1)

上图中环的长度是4。

但有可能也是下面的这种:(图2)

此时,上图中环的长度就是3了。

那怎么求出环的长度呢?

思路:

    这里面,我们需要先利用上面的第7小节中的hasCycle方法(判断链表是否有环的那个方法),这个方法的返回值是boolean型,但是现在要把这个方法稍做修改,让其返回值为相遇的那个结点。然后,我们拿到这个相遇的结点就好办了,这个结点肯定是在环里嘛,我们可以让这个结点对应的指针一直往下走,直到它回到原点,就可以算出环的长度了。

方法:

  

 //方法:判断单链表是否有环。返回的结点是相遇的那个结点 public Node hasCycle(Node head) {   if (head == null) {  return null;  }   Node first = head;  Node second = head;  while (second != null) {  first = first.next;  second = second.next.next;   if (first == second) { //一旦两个指针相遇,说明链表是有环的   return first; //将相遇的那个结点进行返回  }  }  return null; } //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点 public int getCycleLength(Node node) {   if (head == null) {  return 0;  }   Node current = node;  int length = 0;   while (current != null) {  current = current.next;  length++;  if (current == node) { //当current结点走到原点的时候   return length;  }  }  return length; }

完整版代码:(包含测试部分)

 

public class LinkList { public Node head; public Node current;  public int size;  //方法:向链表中添加数据 public void add(int data) {  //判断链表为空的时候  if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点  head = new Node(data);  current = head;  } else {  //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)  current.next = new Node(data);  //把链表的当前索引向后移动一位  current = current.next; //此步操作完成之后,current结点指向新添加的那个结点  } }   //方法重载:向链表中添加结点 public void add(Node node) {  if (node == null) {  return;  }  if (head == null) {  head = node;  current = head;  } else {  current.next = node;  current = current.next;  } }   //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历 public void print(Node node) {  if (node == null) {  return;  }   current = node;  while (current != null) {  System.out.println(current.data);  current = current.next;  } }  //方法:判断单链表是否有环。返回的结点是相遇的那个结点 public Node hasCycle(Node head) {   if (head == null) {  return null;  }   Node first = head;  Node second = head;   while (second != null) {  first = first.next;  second = second.next.next;   if (first == second) { //一旦两个指针相遇,说明链表是有环的   return first; //将相遇的那个结点进行返回  }  }   return null; }  //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点 public int getCycleLength(Node node) {   if (head == null) {  return 0;  }   Node current = node;  int length = 0;   while (current != null) {  current = current.next;  length++;  if (current == node) { //当current结点走到原点的时候   return length;  }  }   return length; }  class Node {  //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。  int data; //数据域  Node next;//指针域   public Node(int data) {  this.data = data;  } }   public static void main(String[] args) {  LinkList list1 = new LinkList();   Node second = null; //把第二个结点记下来   //向LinkList中添加数据  for (int i = 0; i < 4; i++) {  list1.add(i);  if (i == 1) {   second = list1.current; //把第二个结点记下来  }  }   list1.add(second); //将尾结点指向链表的第二个结点,于是单链表就有环了,备注:此时得到的环的结构,是本节中图2的那种结构  Node current = list1.hasCycle(list1.head); //获取相遇的那个结点   System.out.println("环的长度为" + list1.getCycleLength(current)); }  }

 运行效果:

如果将上面的104至122行的测试代码改成下面这样的:(即:将图2中的结构改成图1中的结构)

 public static void main(String[] args) {   LinkList list1 = new LinkList();   //向LinkList中添加数据   for (int i = 0; i < 4; i++) {    list1.add(i);   }    list1.add(list1.head); //将头结点添加到链表当中(将尾结点指向头结点),于是,单链表就有环了。备注:此时得到的这个环的结构,是本节中图1的那种结构。    Node current = list1.hasCycle(list1.head);   System.out.println("环的长度为" + list1.getCycleLength(current));  }

运行结果:

如果把上面的代码中的第8行删掉,那么这个链表就没有环了,于是运行的结果为0。

 

10、单链表中,取出环的起始点:

我们平时碰到的有环链表是下面的这种:(图1)

上图中环的起始点1。

但有可能也是下面的这种:(图2)

此时,上图中环的起始点是2。

方法1:

这里我们需要利用到上面第8小节的取出环的长度的方法getCycleLength,用这个方法来获取环的长度length。拿到环的长度length之后,需要用到两个指针变量first和second,先让second指针走length步;然后让first指针和second指针同时各走一步,当两个指针相遇时,相遇时的结点就是环的起始点。

注:为了找到环的起始点,我们需要先获取环的长度,而为了获取环的长度,我们需要先判断是否有环。所以这里面其实是用到了三个方法。

代码实现:

方法1的核心代码:

 //方法:获取环的起始点。参数length表示环的长度 public Node getCycleStart(Node head, int cycleLength) {  if (head == null) {    return null;  }    Node first = head;   Node second = head;   //先让second指针走length步  for (int i = 0; i < cycleLength; i++) {    second = second.next;   }    //然后让first指针和second指针同时各走一步   while (first != null && second != null) {    first = first.next;    second = second.next;   if (first == second) { //如果两个指针相遇了,说明这个结点就是环的起始点     return first;    }   }    return null;  }

完整版代码:(含测试部分)

 public class LinkList {  public Node head;  public Node current;   public int size;   //方法:向链表中添加数据  public void add(int data) {   //判断链表为空的时候   if (head == null) {//如果头结点为空,说明这个链表还没有创建,那就把新的结点赋给头结点    head = new Node(data);    current = head;   } else {    //创建新的结点,放在当前节点的后面(把新的结点合链表进行关联)    current.next = new Node(data);    //把链表的当前索引向后移动一位    current = current.next; //此步操作完成之后,current结点指向新添加的那个结点   }  }    //方法重载:向链表中添加结点  public void add(Node node) {   if (node == null) {    return;   }   if (head == null) {    head = node;    current = head;   } else {    current.next = node;    current = current.next;   }  }    //方法:遍历链表(打印输出链表。方法的参数表示从节点node开始进行遍历  public void print(Node node) {   if (node == null) {    return;   }    current = node;   while (current != null) {    System.out.println(current.data);    current = current.next;   }  }    //方法:判断单链表是否有环。返回的结点是相遇的那个结点  public Node hasCycle(Node head) {    if (head == null) {    return null;   }    Node first = head;   Node second = head;    while (second != null) {    first = first.next;    second = second.next.next;     if (first == second) { //一旦两个指针相遇,说明链表是有环的     return first; //将相遇的那个结点进行返回    }   }    return null;  }  //方法:有环链表中,获取环的长度。参数node代表的是相遇的那个结点  public int getCycleLength(Node node) {    if (head == null) {    return 0;   }    Node current = node;   int length = 0;    while (current != null) {    current = current.next;    length++;    if (current == node) { //当current结点走到原点的时候     return length;    }   }    return length;  }   //方法:获取环的起始点。参数length表示环的长度  public Node getCycleStart(Node head, int cycleLength) {    if (head == null) {    return null;   }    Node first = head;   Node second = head;   //先让second指针走length步   for (int i = 0; i < cycleLength; i++) {    second = second.next;   }    //然后让first指针和second指针同时各走一步   while (first != null && second != null) {    first = first.next;    second = second.next;     if (first == second) { //如果两个指针相遇了,说明这个结点就是环的起始点     return first;   }  }    return null;  }   class Node {  //注:此处的两个成员变量权限不能为private,因为private的权限是仅对本类访问。   int data; //数据域   Node next;//指针域    public Node(int data) {    this.data = data;   }  }    public static void main(String[] args) {   LinkList list1 = new LinkList();    Node second = null; //把第二个结点记下来    //向LinkList中添加数据   for (int i = 0; i < 4; i++) {    list1.add(i);    if (i == 1) {    second = list1.current; //把第二个结点记下来   }  }   list1.add(second); //将尾结点指向链表的第二个结点,于是单链表就有环了,备注:此时得到的环的结构,是本节中图2的那种结构   Node current = list1.hasCycle(list1.head); //获取相遇的那个结点   int length = list1.getCycleLength(current); //获取环的长度  System.out.println("环的起始点是" + list1.getCycleStart(list1.head, length).data);  }  }

 

11、判断两个单链表相交的第一个交点:

  《编程之美》P193,5.3,面试题37就有这道题。

  面试时,很多人碰到这道题的第一反应是:在第一个链表上顺序遍历每个结点,每遍历到一个结点的时候,在第二个链表上顺序遍历每个结点。如果在第二个链表上有一个结点和第一个链表上的结点一样,说明两个链表在这个结点上重合。显然该方法的时间复杂度为O(len1 * len2)。

方法1:采用栈的思路

    我们可以看出两个有公共结点而部分重合的链表,拓扑形状看起来像一个Y,而不可能是X型。 如下图所示:  

如上图所示,如果单链表有公共结点,那么最后一个结点(结点7)一定是一样的,而且是从中间的某一个结点(结点6)开始,后续的结点都是一样的。

现在的问题是,在单链表中,我们只能从头结点开始顺序遍历,最后才能到达尾结点。最后到达的尾节点却要先被比较,这听起来是不是像“先进后出”?于是我们就能想到利用栈的特点来解决这个问题:分别把两个链表的结点放入两个栈中,这样两个链表的尾结点就位于两个栈的栈顶,接下来比较下一个栈顶,直到找到最后一个相同的结点。

这种思路中,我们需要利用两个辅助栈,空间复杂度是O(len1+len2),时间复杂度是O(len1+len2)。和一开始的蛮力法相比,时间效率得到了提高,相当于是利用空间消耗换取时间效率。

那么,有没有更好的方法呢?接下来要讲。

 

方法2:判断两个链表相交的第一个结点:用到快慢指针,推荐(更优解)

我们在上面的方法2中,之所以用到栈,是因为我们想同时遍历到达两个链表的尾结点。其实为解决这个问题我们还有一个更简单的办法:首先遍历两个链表得到它们的长度。在第二次遍历的时候,在较长的链表上走 |len1-len2| 步,接着再同时在两个链表上遍历,找到的第一个相同的结点就是它们的第一个交点。

这种思路的时间复杂度也是O(len1+len2),但是我们不再需要辅助栈,因此提高了空间效率。当面试官肯定了我们的最后一种思路的时候,就可以动手写代码了。

核心代码:

  //方法:求两个单链表相交的第一个交点  public Node getFirstCommonNode(Node head1, Node head2) {   if (head1 == null || head == null) {    return null;   }    int length1 = getLength(head1);   int length2 = getLength(head2);   int lengthDif = 0; //两个链表长度的差值   Node longHead;   Node shortHead;    //找出较长的那个链表   if (length1 > length2) {    longHead = head1;    shortHead = head2;    lengthDif = length1 - length2;   } else {    longHead = head2;    shortHead = head1;    lengthDif = length2 - length1;   }    //将较长的那个链表的指针向前走length个距离   for (int i = 0; i < lengthDif; i++) {    longHead = longHead.next;   }    //将两个链表的指针同时向前移动   while (longHead != null && shortHead != null) {    if (longHead == shortHead) { //第一个相同的结点就是相交的第一个结点     return longHead;    }    longHead = longHead.next;    shortHead = shortHead.next;   }    return null;  }    //方法:获取单链表的长度  public int getLength(Node head) {   if (head == null) {    return 0;   }    int length = 0;  Node current = head;   while (current != null) {     length++;    current = current.next;   }    return length;

以上就是有关java链表的经典面试题目,希望可以帮助大家顺利通过面试。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表