首页 > 编程 > Python > 正文

Python多进程编程技术实例分析

2019-11-25 18:13:15
字体:
来源:转载
供稿:网友

本文以实例形式分析了Python多进程编程技术,有助于进一步Python程序设计技巧。分享给大家供大家参考。具体分析如下:

一般来说,由于Python的线程有些限制,例如多线程不能充分利用多核CPU等问题,因此在Python中我们更倾向使用多进程。但在做不阻塞的异步UI等场景,我们也会使用多线程。本篇文章主要探讨Python多进程的问题。

Python在2.6引入了多进程的机制,并提供了丰富的组件及api以方便编写并发应用。multiprocessing包的组件Process, Queue, Pipe, Lock等组件提供了与多线程类似的功能。使用这些组件,可以方便地编写多进程并发程序。

Process

Process的使用有点像java.lang.Thread,但Thread是线程。start方法用以启动某个进程。一个简单的示例:

from multiprocessing import Processimport osimport timedef sleeper(name, seconds):  print "Process ID# %s" % (os.getpid())  print "Parent Process ID# %s" % (os.getppid())  print "%s will sleep for %s seconds" % (name, seconds)  time.sleep(seconds)if __name__ == "__main__":  child_proc = Process(target=sleeper, args=('bob', 5))  child_proc.start()  print "in parent process after child process start"  print "parent process abount to join child process"  child_proc.join()  print "in parent process after child process join"  print "the parent's parent process: %s" % (os.getppid())

实例化一个Process必须要指定target和args。target是新的进程的入口方法,可以认为是main方法。args是该方法的参数列表。启动进程类似于启动Thread,必须要调用start方法。也可以继承Process,覆盖run方法,在run方法中实现该进程的逻辑。调用join方法会阻塞当前调用进程,直到被调用进程运行结束。
手工终止一个进程可以调用terminate方法,在UNIX系统中,该方法会发送SIGTERM信号量,而在windows系统中,会借助TerminateProcess方法。需要注意的是,exit处理逻辑并不会被执行,该进程的子进程不会被终止,他们只会变成孤儿进程。

Queue

Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。put方法用以插入数据到队列中,put方法还有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,该方法会阻塞timeout指定的时间,直到该队列有剩余的空间。如果超时,会抛出Queue.Full异常。如果blocked为False,但该Queue已满,会立即抛出Queue.Full异常。

get方法可以从队列读取并且删除一个元素。同样,get方法有两个可选参数:blocked和timeout。如果blocked为True(默认值),并且timeout为正值,那么在等待时间内没有取到任何元素,会抛出Queue.Empty异常。如果blocked为False,有两种情况存在,如果Queue有一个值可用,则立即返回该值,否则,如果队列为空,则立即抛出Queue.Empty异常。Queue的一段示例代码:

from multiprocessing import Process, Queuedef offer(queue):  queue.put("Hello World")def test(queue, num):  queue.put("Hello World: " + str(num))if __name__ == '__main__':  q = Queue()  p1 = Process(target=test, args=(q, 1))  p1.start()  p = Process(target=offer, args=(q,))  p.start()  p2 = Process(target=test, args=(q, 2))  p2.start()  p2 = Process(target=test, args=(q, 3))  p2.start()  print q.get()  print q.get()  print q.get()  print q.get()  print q.close()

输出:

Hello World: 1
Hello World
Hello World: 2
None

Pipes

Pipe方法返回(conn1, conn2)代表一个管道的两个端。Pipe方法有duplex参数,如果duplex参数为True(默认值),那么这个管道是全双工模式,也就是说conn1和conn2均可收发。duplex为False,conn1只负责接受消息,conn2只负责发送消息。

send和recv方法分别是发送和接受消息的方法。例如,在全双工模式下,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。

from multiprocessing import Process, Pipedef send(conn):  conn.send("Hello World")  conn.close()if __name__ == '__main__':  parent_conn, child_conn = Pipe()  p = Process(target=send, args=(child_conn,))  p.start()  print parent_conn.recv()

同步

multiprocessing包提供了Condition, Event, Lock, RLock, Semaphore等组件可用于同步。下面是使用Lock的一个示例:

from multiprocessing import Process, Lockdef l(lock, num):  lock.acquire()   print "Hello Num: %s" % (num)  lock.release()if __name__ == '__main__':  lock = Lock()for num in range(20):  Process(target=l, args=(lock, num)).start()

总结

以上是Python multiprocessing库的简单介绍和实例,熟悉Java多线程开发的同学是不是觉得很熟悉,和java的Concurrency API很像,不过javaConcurrency是处理多线程的而已,我们可以直接按照以前Java多线程的经验用这些API。

感兴趣的朋友可以测试运行本文实例以加深理解。相信本文所述对大家Python程序设计的学习有一定的借鉴价值。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表