1. Scrapy简介
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试
Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下
Scrapy主要包括了以下组件:
(1)引擎(Scrapy): 用来处理整个系统的数据流处理, 触发事务(框架核心)
(2)调度器(Scheduler): 用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
(3)下载器(Downloader): 用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
(4)爬虫(Spiders): 爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
项目管道(Pipeline): 负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
(5)下载器中间件(Downloader Middlewares): 位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
(6)爬虫中间件(Spider Middlewares): 介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
(7)调度中间件(Scheduler Middewares): 介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
首先,引擎从调度器中取出一个链接(URL)用于接下来的抓取
引擎把URL封装成一个请求(Request)传给下载器,下载器把资源下载下来,并封装成应答包(Response)
然后,爬虫解析Response
若是解析出实体(Item),则交给实体管道进行进一步的处理。
若是解析出的是链接(URL),则把URL交给Scheduler等待抓取
2. 安装Scrapy
使用以下命令:
sudo pip install virtualenv #安装虚拟环境工具virtualenv ENV #创建一个虚拟环境目录source ./ENV/bin/active #激活虚拟环境pip install Scrapy#验证是否安装成功pip list
#输出如下cffi (0.8.6)cryptography (0.6.1)cssselect (0.9.1)lxml (3.4.1)pip (1.5.6)pycparser (2.10)pyOpenSSL (0.14)queuelib (1.2.2)Scrapy (0.24.4)setuptools (3.6)six (1.8.0)Twisted (14.0.2)w3lib (1.10.0)wsgiref (0.1.2)zope.interface (4.1.1)
更多虚拟环境的操作可以查看我的博文
3. Scrapy Tutorial
在抓取之前, 你需要新建一个Scrapy工程. 进入一个你想用来保存代码的目录,然后执行:
$ scrapy startproject tutorial
这个命令会在当前目录下创建一个新目录 tutorial, 它的结构如下:
.├── scrapy.cfg└── tutorial ├── __init__.py ├── items.py ├── pipelines.py ├── settings.py └── spiders └── __init__.py
这些文件主要是:
(1)scrapy.cfg: 项目配置文件
(2)tutorial/: 项目python模块, 之后您将在此加入代码
(3)tutorial/items.py: 项目items文件
(4)tutorial/pipelines.py: 项目管道文件
(5)tutorial/settings.py: 项目配置文件
(6)tutorial/spiders: 放置spider的目录
3.1. 定义Item
Items是将要装载抓取的数据的容器,它工作方式像 python 里面的字典,但它提供更多的保护,比如对未定义的字段填充以防止拼写错误
通过创建scrapy.Item类, 并且定义类型为 scrapy.Field 的类属性来声明一个Item.
我们通过将需要的item模型化,来控制从 dmoz.org 获得的站点数据,比如我们要获得站点的名字,url 和网站描述,我们定义这三种属性的域。在 tutorial 目录下的 items.py 文件编辑
from scrapy.item import Item, Fieldclass DmozItem(Item): # define the fields for your item here like: name = Field() description = Field() url = Field()
3.2. 编写Spider
Spider 是用户编写的类, 用于从一个域(或域组)中抓取信息, 定义了用于下载的URL的初步列表, 如何跟踪链接,以及如何来解析这些网页的内容用于提取items。
要建立一个 Spider,继承 scrapy.Spider 基类,并确定三个主要的、强制的属性:
name:爬虫的识别名,它必须是唯一的,在不同的爬虫中你必须定义不同的名字.
start_urls:包含了Spider在启动时进行爬取的url列表。因此,第一个被获取到的页面将是其中之一。后续的URL则从初始的URL获取到的数据中提取。我们可以利用正则表达式定义和过滤需要进行跟进的链接。
parse():是spider的一个方法。被调用时,每个初始URL完成下载后生成的 Response 对象将会作为唯一的参数传递给该函数。该方法负责解析返回的数据(response data),提取数据(生成item)以及生成需要进一步处理的URL的 Request 对象。
这个方法负责解析返回的数据、匹配抓取的数据(解析为 item )并跟踪更多的 URL。
在 /tutorial/tutorial/spiders 目录下创建 dmoz_spider.py
import scrapyclass DmozSpider(scrapy.Spider): name = "dmoz" allowed_domains = ["dmoz.org"] start_urls = [ "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/" ] def parse(self, response): filename = response.url.split("/")[-2] with open(filename, 'wb') as f: f.write(response.body)
3.3. 爬取
当前项目结构
├── scrapy.cfg└── tutorial ├── __init__.py ├── items.py ├── pipelines.py ├── settings.py └── spiders ├── __init__.py └── dmoz_spider.py
到项目根目录, 然后运行命令:
$ scrapy crawl dmoz
2014-12-15 09:30:59+0800 [scrapy] INFO: Scrapy 0.24.4 started (bot: tutorial)2014-12-15 09:30:59+0800 [scrapy] INFO: Optional features available: ssl, http112014-12-15 09:30:59+0800 [scrapy] INFO: Overridden settings: {'NEWSPIDER_MODULE': 'tutorial.spiders', 'SPIDER_MODULES': ['tutorial.spiders'], 'BOT_NAME': 'tutorial'}2014-12-15 09:30:59+0800 [scrapy] INFO: Enabled extensions: LogStats, TelnetConsole, CloseSpider, WebService, CoreStats, SpiderState2014-12-15 09:30:59+0800 [scrapy] INFO: Enabled downloader middlewares: HttpAuthMiddleware, DownloadTimeoutMiddleware, UserAgentMiddleware, RetryMiddleware, DefaultHeadersMiddleware, MetaRefreshMiddleware, HttpCompressionMiddleware, RedirectMiddleware, CookiesMiddleware, ChunkedTransferMiddleware, DownloaderStats2014-12-15 09:30:59+0800 [scrapy] INFO: Enabled spider middlewares: HttpErrorMiddleware, OffsiteMiddleware, RefererMiddleware, UrlLengthMiddleware, DepthMiddleware2014-12-15 09:30:59+0800 [scrapy] INFO: Enabled item pipelines:2014-12-15 09:30:59+0800 [dmoz] INFO: Spider opened2014-12-15 09:30:59+0800 [dmoz] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)2014-12-15 09:30:59+0800 [scrapy] DEBUG: Telnet console listening on 127.0.0.1:60232014-12-15 09:30:59+0800 [scrapy] DEBUG: Web service listening on 127.0.0.1:60802014-12-15 09:31:00+0800 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/> (referer: None)2014-12-15 09:31:00+0800 [dmoz] DEBUG: Crawled (200) <GET http://www.dmoz.org/Computers/Programming/Languages/Python/Books/> (referer: None)2014-12-15 09:31:00+0800 [dmoz] INFO: Closing spider (finished)2014-12-15 09:31:00+0800 [dmoz] INFO: Dumping Scrapy stats: {'downloader/request_bytes': 516, 'downloader/request_count': 2, 'downloader/request_method_count/GET': 2, 'downloader/response_bytes': 16338, 'downloader/response_count': 2, 'downloader/response_status_count/200': 2, 'finish_reason': 'finished', 'finish_time': datetime.datetime(2014, 12, 15, 1, 31, 0, 666214), 'log_count/DEBUG': 4, 'log_count/INFO': 7, 'response_received_count': 2, 'scheduler/dequeued': 2, 'scheduler/dequeued/memory': 2, 'scheduler/enqueued': 2, 'scheduler/enqueued/memory': 2, 'start_time': datetime.datetime(2014, 12, 15, 1, 30, 59, 533207)}2014-12-15 09:31:00+0800 [dmoz] INFO: Spider closed (finished)
3.4. 提取Items
3.4.1. 介绍Selector
从网页中提取数据有很多方法。Scrapy使用了一种基于 XPath 或者 CSS 表达式机制: Scrapy Selectors
出XPath表达式的例子及对应的含义:
等多强大的功能使用可以查看XPath tutorial
为了方便使用 XPaths,Scrapy 提供 Selector 类, 有四种方法 :
3.4.2. 取出数据
在查看网站源码后, 网站信息在第二个<ul>内
<ul class="directory-url" style="margin-left:0;"> <li><a href="http://www.pearsonhighered.com/educator/academic/product/0,,0130260363,00%2Ben-USS_01DBC.html" class="listinglink">Core Python Programming</a> - By Wesley J. Chun; Prentice Hall PTR, 2001, ISBN 0130260363. For experienced developers to improve extant skills; professional level examples. Starts by introducing syntax, objects, error handling, functions, classes, built-ins. [Prentice Hall]<div class="flag"><a href="/public/flag?cat=Computers%2FProgramming%2FLanguages%2FPython%2FBooks&url=http%3A%2F%2Fwww.pearsonhighered.com%2Feducator%2Facademic%2Fproduct%2F0%2C%2C0130260363%2C00%252Ben-USS_01DBC.html"><img src="/img/flag.png" alt="[!]" title="report an issue with this listing"></a></div></li>...省略部分...</ul>
那么就可以通过一下方式进行提取数据
#通过如下命令选择每个在网站中的 <li> 元素:sel.xpath('//ul/li')#网站描述:sel.xpath('//ul/li/text()').extract()#网站标题:sel.xpath('//ul/li/a/text()').extract()#网站链接:sel.xpath('//ul/li/a/@href').extract()
如前所述,每个 xpath() 调用返回一个 selectors 列表,所以我们可以结合 xpath() 去挖掘更深的节点。我们将会用到这些特性,所以:
for sel in response.xpath('//ul/li') title = sel.xpath('a/text()').extract() link = sel.xpath('a/@href').extract() desc = sel.xpath('text()').extract() print title, link, desc
在已有的爬虫文件中修改代码
import scrapyclass DmozSpider(scrapy.Spider): name = "dmoz" allowed_domains = ["dmoz.org"] start_urls = [ "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/" ] def parse(self, response): for sel in response.xpath('//ul/li'): title = sel.xpath('a/text()').extract() link = sel.xpath('a/@href').extract() desc = sel.xpath('text()').extract() print title, link, desc
3.4.3. 使用item
Item对象是自定义的python字典,可以使用标准的字典语法来获取到其每个字段的值(字段即是我们之前用Field赋值的属性)
>>> item = DmozItem()>>> item['title'] = 'Example title'>>> item['title']'Example title'
一般来说,Spider将会将爬取到的数据以 Item 对象返回, 最后修改爬虫类,使用 Item 来保存数据,代码如下
from scrapy.spider import Spiderfrom scrapy.selector import Selectorfrom tutorial.items import DmozItemclass DmozSpider(Spider): name = "dmoz" allowed_domains = ["dmoz.org"] start_urls = [ "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/", "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/", ] def parse(self, response): sel = Selector(response) sites = sel.xpath('//ul[@class="directory-url"]/li') items = [] for site in sites: item = DmozItem() item['name'] = site.xpath('a/text()').extract() item['url'] = site.xpath('a/@href').extract() item['description'] = site.xpath('text()').re('-/s[^/n]*//r') items.append(item) return items
3.5. 使用Item Pipeline
当Item在Spider中被收集之后,它将会被传递到Item Pipeline,一些组件会按照一定的顺序执行对Item的处理。
每个item pipeline组件(有时称之为ItemPipeline)是实现了简单方法的Python类。他们接收到Item并通过它执行一些行为,同时也决定此Item是否继续通过pipeline,或是被丢弃而不再进行处理。
以下是item pipeline的一些典型应用:
编写你自己的item pipeline很简单,每个item pipeline组件是一个独立的Python类,同时必须实现以下方法:
(1)process_item(item, spider) #每个item pipeline组件都需要调用该方法,这个方法必须返回一个 Item (或任何继承类)对象,或是抛出 DropItem异常,被丢弃的item将不会被之后的pipeline组件所处理。
#参数:
item: 由 parse 方法返回的 Item 对象(Item对象)
spider: 抓取到这个 Item 对象对应的爬虫对象(Spider对象)
(2)open_spider(spider) #当spider被开启时,这个方法被调用。
#参数:
spider : (Spider object) 被开启的spider
(3)close_spider(spider) #当spider被关闭时,这个方法被调用,可以再爬虫关闭后进行相应的数据处理。
#参数:
spider : (Spider object) 被关闭的spider
为JSON文件编写一个items
from scrapy.exceptions import DropItemclass TutorialPipeline(object): # put all words in lowercase words_to_filter = ['politics', 'religion'] def process_item(self, item, spider): for word in self.words_to_filter: if word in unicode(item['description']).lower(): raise DropItem("Contains forbidden word: %s" % word) else: return item
在 settings.py 中设置ITEM_PIPELINES激活item pipeline,其默认为[]
ITEM_PIPELINES = {'tutorial.pipelines.FilterWordsPipeline': 1}
3.6. 存储数据
使用下面的命令存储为json文件格式
scrapy crawl dmoz -o items.json
4.示例
4.1最简单的spider(默认的Spider)
用实例属性start_urls中的URL构造Request对象
框架负责执行request
将request返回的response对象传递给parse方法做分析
简化后的源码:
class Spider(object_ref): """Base class for scrapy spiders. All spiders must inherit from this class. """ name = None def __init__(self, name=None, **kwargs): if name is not None: self.name = name elif not getattr(self, 'name', None): raise ValueError("%s must have a name" % type(self).__name__) self.__dict__.update(kwargs) if not hasattr(self, 'start_urls'): self.start_urls = [] def start_requests(self): for url in self.start_urls: yield self.make_requests_from_url(url) def make_requests_from_url(self, url): return Request(url, dont_filter=True) def parse(self, response): raise NotImplementedError BaseSpider = create_deprecated_class('BaseSpider', Spider)
一个回调函数返回多个request的例子
import scrapyfrom myproject.items import MyItemclass MySpider(scrapy.Spider): name = 'example.com' allowed_domains = ['example.com'] start_urls = [ 'http://www.example.com/1.html', 'http://www.example.com/2.html', 'http://www.example.com/3.html', ] def parse(self, response): sel = scrapy.Selector(response) for h3 in response.xpath('//h3').extract(): yield MyItem(title=h3) for url in response.xpath('//a/@href').extract(): yield scrapy.Request(url, callback=self.parse)
构造一个Request对象只需两个参数: URL和回调函数
4.2CrawlSpider
通常我们需要在spider中决定:哪些网页上的链接需要跟进, 哪些网页到此为止,无需跟进里面的链接。CrawlSpider为我们提供了有用的抽象――Rule,使这类爬取任务变得简单。你只需在rule中告诉scrapy,哪些是需要跟进的。
回忆一下我们爬行mininova网站的spider.
class MininovaSpider(CrawlSpider): name = 'mininova' allowed_domains = ['mininova.org'] start_urls = ['http://www.mininova.org/yesterday'] rules = [Rule(LinkExtractor(allow=['/tor//d+']), 'parse_torrent')] def parse_torrent(self, response): torrent = TorrentItem() torrent['url'] = response.url torrent['name'] = response.xpath("//h1/text()").extract() torrent['description'] = response.xpath("//div[@id='description']").extract() torrent['size'] = response.xpath("//div[@id='specifications']/p[2]/text()[2]").extract() return torrent
上面代码中 rules的含义是:匹配/tor//d+的URL返回的内容,交给parse_torrent处理,并且不再跟进response上的URL。
官方文档中也有个例子:
rules = ( # 提取匹配 'category.php' (但不匹配 'subsection.php') 的链接并跟进链接(没有callback意味着follow默认为True) Rule(LinkExtractor(allow=('category/.php', ), deny=('subsection/.php', ))), # 提取匹配 'item.php' 的链接并使用spider的parse_item方法进行分析 Rule(LinkExtractor(allow=('item/.php', )), callback='parse_item'), )
除了Spider和CrawlSpider外,还有XMLFeedSpider, CSVFeedSpider, SitemapSpider
新闻热点
疑难解答
图片精选