首页 > 编程 > Python > 正文

python读取与写入csv格式文件的示例代码

2019-11-25 15:31:56
字体:
来源:转载
供稿:网友

在数据分析中经常需要从csv格式的文件中存取数据以及将数据写书到csv文件中。将csv文件中的数据直接读取为 dict 类型和 DataFrame 是非常方便也很省事的一种做法,以下代码以鸢尾花数据为例。

csv文件读取为dict

代码

 # -*- coding: utf-8 -*-import csvwith open('E:/iris.csv') as csvfile:reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中csvfile.close()print list_1[0]

输出

 {'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'}

如果读入的每条数据需要单独处理且数据量较大,推荐逐条处理然后再放入。

 list_1 = list()for e in reader: list_1.append(your_func(e)) # your_func为每条数据的处理函数 

多条类型为dict的数据写入csv文件

代码

 # 数据data = [{'Petal.Length': '1.4', 'Sepal.Length': '5.1', 'Petal.Width': '0.2', 'Sepal.Width': '3.5', 'Species': 'setosa'},{'Petal.Length': '1.4', 'Sepal.Length': '4.9', 'Petal.Width': '0.2', 'Sepal.Width': '3', 'Species': 'setosa'},{'Petal.Length': '1.3', 'Sepal.Length': '4.7', 'Petal.Width': '0.2', 'Sepal.Width': '3.2', 'Species': 'setosa'},{'Petal.Length': '1.5', 'Sepal.Length': '4.6', 'Petal.Width': '0.2', 'Sepal.Width': '3.1', 'Species': 'setosa'}]# 表头header = ['Petal.Length', 'Sepal.Length', 'Petal.Width', 'Sepal.Width', 'Species']print len(data)with open('E:/dst.csv', 'wb') as dstfile: #写入方式选择wb,否则有空行 writer = csv.DictWriter(dstfile, fieldnames=header) writer.writeheader() # 写入表头 writer.writerows(data) # 批量写入dstfile.close()

上述代码将数据整体写入csv文件,如果数据量较多且想实时查看写入了多少数据可以使用 writerows 函数。

读取csv文件为DataFrame

代码

 # 读取csv文件为DataFrameimport pandas as pddframe = pd.DataFrame.from_csv('E:/iris.csv')

也可以稍微曲折点:

import csvimport pandas as pdwith open('E:/iris.csv') as csvfile: reader = csv.DictReader(csvfile, fieldnames=None) # fieldnames默认为None,如果所读csv文件没有表头,则需要指定 list_1 = [e for e in reader] # 每行数据作为一个dict存入链表中csvfile.close()dfrme = pd.DataFrame.from_records(list_1) 

从zip文件中读取指定csv文件为DataFrame

dst.zip文件中包含有dst.csv和其它文件,现在在不解压缩的情况下直接读取dst.csv文件为DataFrame.

import pandas as pdimport zipfilez_file = zipfile.ZipFile('E:/dst.zip')dframe = pd.read_csv(z_file.open('dst.csv'))z_file.close()print dframe 

DataFrame写入csv文件

dfrme.to_csv('E:/dst.csv', index=False) # 不要每行的编号 

读取txt文件为DataFrame

import pandas as pd# `path`为文件路径或文件句柄,`header`文件第一行是否是表头,`delimiter`每个字段的分隔符,`dtype`数据读入后的存储类型。frame = pd.read_table(path, header=None, index_col=False, delimiter='/t', dtype=str)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表