首页 > 编程 > Python > 正文

基于Python实现的ID3决策树功能示例

2019-11-25 15:26:37
字体:
来源:转载
供稿:网友

本文实例讲述了基于Python实现的ID3决策树功能。分享给大家供大家参考,具体如下:

ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做更多的事。ID3算法,即Iterative Dichotomiser 3,迭代二叉树3代,是Ross Quinlan发明的一种决策树算法,这个算法的基础就是上面提到的奥卡姆剃刀原理,越是小型的决策树越优于大的决策树,尽管如此,也不总是生成最小的树型结构,而是一个启发式算法。

如下示例是一个判断海洋生物数据是否是鱼类而构建的基于ID3思想的决策树

# coding=utf-8import operatorfrom math import logimport timedef createDataSet():  dataSet = [[1, 1, 'yes'],        [1, 1, 'yes'],        [1, 0, 'no'],        [0, 1, 'no'],        [0, 1, 'no'],        [0,0,'maybe']]  labels = ['no surfaceing', 'flippers']  return dataSet, labels# 计算香农熵def calcShannonEnt(dataSet):  numEntries = len(dataSet)  labelCounts = {}  for feaVec in dataSet:    currentLabel = feaVec[-1]    if currentLabel not in labelCounts:      labelCounts[currentLabel] = 0    labelCounts[currentLabel] += 1  shannonEnt = 0.0  for key in labelCounts:    prob = float(labelCounts[key]) / numEntries    shannonEnt -= prob * log(prob, 2)  return shannonEntdef splitDataSet(dataSet, axis, value):  retDataSet = []  for featVec in dataSet:    if featVec[axis] == value:      reducedFeatVec = featVec[:axis]      reducedFeatVec.extend(featVec[axis + 1:])      retDataSet.append(reducedFeatVec)  return retDataSetdef chooseBestFeatureToSplit(dataSet):  numFeatures = len(dataSet[0]) - 1 # 因为数据集的最后一项是标签  baseEntropy = calcShannonEnt(dataSet)  bestInfoGain = 0.0  bestFeature = -1  for i in range(numFeatures):    featList = [example[i] for example in dataSet]    uniqueVals = set(featList)    newEntropy = 0.0    for value in uniqueVals:      subDataSet = splitDataSet(dataSet, i, value)      prob = len(subDataSet) / float(len(dataSet))      newEntropy += prob * calcShannonEnt(subDataSet)    infoGain = baseEntropy - newEntropy    if infoGain > bestInfoGain:      bestInfoGain = infoGain      bestFeature = i  return bestFeature# 因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类# 还是没有算完,这时候就会采用多数表决的方式计算节点分类def majorityCnt(classList):  classCount = {}  for vote in classList:    if vote not in classCount.keys():      classCount[vote] = 0    classCount[vote] += 1  return max(classCount)def createTree(dataSet, labels):  classList = [example[-1] for example in dataSet]  if classList.count(classList[0]) == len(classList): # 类别相同则停止划分    return classList[0]  if len(dataSet[0]) == 1: # 所有特征已经用完    return majorityCnt(classList)  bestFeat = chooseBestFeatureToSplit(dataSet)  bestFeatLabel = labels[bestFeat]  myTree = {bestFeatLabel: {}}  del (labels[bestFeat])  featValues = [example[bestFeat] for example in dataSet]  uniqueVals = set(featValues)  for value in uniqueVals:    subLabels = labels[:] # 为了不改变原始列表的内容复制了一下    myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,                                bestFeat, value), subLabels)  return myTreedef main():  data, label = createDataSet()  t1 = time.clock()  myTree = createTree(data, label)  t2 = time.clock()  print myTree  print 'execute for ', t2 - t1if __name__ == '__main__':  main()

运行结果如下:

{'no surfaceing': {0: {'flippers': {0: 'maybe', 1: 'no'}}, 1: {'flippers': {0: 'no', 1: 'yes'}}}}execute for 0.0103958394532

最后我们测试一下这个脚本即可,如果想把这个生成的决策树用图像画出来,也只是在需要在脚本里面定义一个plottree的函数即可。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表