首页 > 编程 > JavaScript > 正文

前端JS面试中常见的算法问题总结

2019-11-19 18:17:33
字体:
来源:转载
供稿:网友

前言

学习数据结构与算法对于工程师去理解和分析问题都是有帮助的。如果将来当我们面对较为复杂的问题,这些基础知识的积累可以帮助我们更好的优化解决思路。下面罗列在前端面试中经常撞见的几个问题吧。

Q1 判断一个单词是否是回文?

回文是指把相同的词汇或句子,在下文中调换位置或颠倒过来,产生首尾回环的情趣,叫做回文,也叫回环。比如 mamam redivider .

很多人拿到这样的题目非常容易想到用for 将字符串颠倒字母顺序然后匹配就行了。其实重要的考察的就是对于reverse的实现。其实我们可以利用现成的函数,将字符串转换成数组,这个思路很重要,我们可以拥有更多的自由度去进行字符串的一些操作。

function checkPalindrom(str) {   return str == str.split('').reverse().join('');}

Q2 去掉一组整型数组重复的值

比如输入: [1,13,24,11,11,14,1,2]

输出: [1,13,24,11,14,2]

需要去掉重复的11 和 1 这两个元素。

这道问题出现在诸多的前端面试题中,主要考察个人对Object的使用,利用key来进行筛选。

/*** unique an array **/let unique = function(arr) {  let hashTable = {}; let data = []; for(let i=0,l=arr.length;i<l;i++) {  if(!hashTable[arr[i]]) {   hashTable[arr[i]] = true;   data.push(arr[i]);  } } return data}module.exports = unique; 

Q3 统计一个字符串出现最多的字母

给出一段英文连续的英文字符窜,找出重复出现次数最多的字母

输入 : afjghdfraaaasdenas

输出 : a

前面出现过去重的算法,这里需要是统计重复次数。

function findMaxDuplicateChar(str) {  if(str.length == 1) {  return str; } let charObj = {}; for(let i=0;i<str.length;i++) {  if(!charObj[str.charAt(i)]) {   charObj[str.charAt(i)] = 1;  }else{   charObj[str.charAt(i)] += 1;  } } let maxChar = '',   maxValue = 1; for(var k in charObj) {  if(charObj[k] >= maxValue) {   maxChar = k;   maxValue = charObj[k];  } } return maxChar;}module.exports = findMaxDuplicateChar; 

Q4 排序算法

如果抽到算法题目的话,应该大多都是比较开放的题目,不限定算法的实现,但是一定要求掌握其中的几种,所以冒泡排序,这种较为基础并且便于理解记忆的算法一定需要熟记于心。冒泡排序算法就是依次比较大小,小的的大的进行位置上的交换。

function bubbleSort(arr) {   for(let i = 0,l=arr.length;i<l-1;i++) {    for(let j = i+1;j<l;j++) {      if(arr[i]>arr[j]) {        let tem = arr[i];        arr[i] = arr[j];        arr[j] = tem;      }    }  }  return arr;}module.exports = bubbleSort; 

除了冒泡排序外,其实还有很多诸如 插入排序,快速排序,希尔排序等。每一种排序算法都有各自的特点。全部掌握也不需要,但是心底一定要熟悉几种算法。 比如快速排序,其效率很高,而其基本原理如图(来自wiki):

算法参考某个元素值,将小于它的值,放到左数组中,大于它的值的元素就放到右数组中,然后递归进行上一次左右数组的操作,返回合并的数组就是已经排好顺序的数组了。

function quickSort(arr) {  if(arr.length<=1) {    return arr;  }  let leftArr = [];  let rightArr = [];  let q = arr[0];  for(let i = 1,l=arr.length; i<l; i++) {    if(arr[i]>q) {      rightArr.push(arr[i]);    }else{      leftArr.push(arr[i]);    }  }  return [].concat(quickSort(leftArr),[q],quickSort(rightArr));}module.exports = quickSort; 

安利大家一个学习的地址,通过动画演示算法的实现。

HTML5 Canvas Demo: Sorting Algorithms

Q5 不借助临时变量,进行两个整数的交换

输入 a = 2, b = 4 输出 a = 4, b =2

这种问题非常巧妙,需要大家跳出惯有的思维,利用 a , b进行置换。

主要是利用 + - 去进行运算,类似 a = a + ( b - a) 实际上等同于最后 的 a = b;

function swap(a , b) {  b = b - a; a = a + b; b = a - b; return [a,b];}module.exports = swap; 

Q6 使用canvas 绘制一个有限度的斐波那契数列的曲线?

 

数列长度限定在9.

斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列主要考察递归的调用。我们一般都知道定义

fibo[i] = fibo[i-1]+fibo[i-2]; 

生成斐波那契数组的方法

function getFibonacci(n) {  var fibarr = []; var i = 0; while(i<n) {  if(i<=1) {   fibarr.push(i);  }else{   fibarr.push(fibarr[i-1] + fibarr[i-2])  }  i++; } return fibarr;}

剩余的工作就是利用canvas arc方法进行曲线绘制了

DEMO

Q7 找出下列正数组的最大差值比如:

输入 [10,5,11,7,8,9]

输出 6

这是通过一道题目去测试对于基本的数组的最大值的查找,很明显我们知道,最大差值肯定是一个数组中最大值与最小值的差。

 function getMaxProfit(arr) {  var minPrice = arr[0];  var maxProfit = 0;  for (var i = 0; i < arr.length; i++) {    var currentPrice = arr[i];    minPrice = Math.min(minPrice, currentPrice);    var potentialProfit = currentPrice - minPrice;    maxProfit = Math.max(maxProfit, potentialProfit);  }  return maxProfit;}

Q8 随机生成指定长度的字符串

实现一个算法,随机生成指制定长度的字符窜。

比如给定 长度 8  输出 4ldkfg9j

function randomString(n) {  let str = 'abcdefghijklmnopqrstuvwxyz9876543210'; let tmp = '',   i = 0,   l = str.length; for (i = 0; i < n; i++) {  tmp += str.charAt(Math.floor(Math.random() * l)); } return tmp;}module.exports = randomString; 

Q9 实现类似getElementsByClassName 的功能

自己实现一个函数,查找某个DOM节点下面的包含某个class的所有DOM节点?不允许使用原生提供的 getElementsByClassName querySelectorAll 等原生提供DOM查找函数。

function queryClassName(node, name) {  var starts = '(^|[ /n/r/t/f])',    ends = '([ /n/r/t/f]|$)'; var array = [],    regex = new RegExp(starts + name + ends),    elements = node.getElementsByTagName("*"),    length = elements.length,    i = 0,    element;  while (i < length) {    element = elements[i];    if (regex.test(element.className)) {      array.push(element);    }    i += 1;  }  return array;}

Q10 使用JS 实现二叉查找树(Binary Search Tree)

一般叫全部写完的概率比较少,但是重点考察你对它的理解和一些基本特点的实现。 二叉查找树,也称二叉搜索树、有序二叉树(英语:ordered binary tree)是指一棵空树或者具有下列性质的二叉树:

  1. 任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为O(log n)。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、multiset、关联数组等。

在写的时候需要足够理解二叉搜素树的特点,需要先设定好每个节点的数据结构

class Node {  constructor(data, left, right) {  this.data = data;  this.left = left;  this.right = right; }}

树是有节点构成,由根节点逐渐延生到各个子节点,因此它具备基本的结构就是具备一个根节点,具备添加,查找和删除节点的方法.

class BinarySearchTree { constructor() {  this.root = null; } insert(data) {  let n = new Node(data, null, null);  if (!this.root) {   return this.root = n;  }  let currentNode = this.root;  let parent = null;  while (1) {   parent = currentNode;   if (data < currentNode.data) {    currentNode = currentNode.left;    if (currentNode === null) {     parent.left = n;     break;    }   } else {    currentNode = currentNode.right;    if (currentNode === null) {     parent.right = n;     break;    }   }  } } remove(data) {  this.root = this.removeNode(this.root, data) } removeNode(node, data) {  if (node == null) {   return null;  }  if (data == node.data) {   // no children node   if (node.left == null && node.right == null) {    return null;   }   if (node.left == null) {    return node.right;   }   if (node.right == null) {    return node.left;   }   let getSmallest = function(node) {    if(node.left === null && node.right == null) {     return node;    }    if(node.left != null) {     return node.left;    }    if(node.right !== null) {     return getSmallest(node.right);    }   }   let temNode = getSmallest(node.right);   node.data = temNode.data;   node.right = this.removeNode(temNode.right,temNode.data);   return node;  } else if (data < node.data) {   node.left = this.removeNode(node.left,data);   return node;  } else {   node.right = this.removeNode(node.right,data);   return node;  } } find(data) {  var current = this.root;  while (current != null) {   if (data == current.data) {    break;   }   if (data < current.data) {    current = current.left;   } else {    current = current.right   }  }  return current.data; }}module.exports = BinarySearchTree; 

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表