首页 > 编程 > JavaScript > 正文

Angularjs 1.3 中的$parse实例代码

2019-11-19 15:27:11
字体:
来源:转载
供稿:网友

这次我们来看一下angular的Sandboxing Angular Expressions。关于内置方法的,核心有两块:Lexer和Parser。其中大家对$parse可能更了解一点。好了不多废话,先看Lexer的内部结构:

1.Lexer

//构造函数var Lexer = function(options) { this.options = options;};//原型 Lexer.prototype = { constructor: Lexer, lex: function(){}, is: function(){}, peek: function(){ /* 返回表达式的下一个位置的数据,如果没有则返回false */ }, isNumber: function(){ /* 判断当前表达式是否是一个数字 */ }, isWhitespace: function(){/* 判断当前表达式是否是空格符 */}, isIdent: function(){/* 判断当前表达式是否是英文字符(包含_和$) */}, isExpOperator: function(){/* 判断当时表达式是否是-,+还是数字 */}, throwError: function(){ /* 抛出异常 */}, readNumber: function(){ /* 读取数字 */}, readIdent: function(){ /* 读取字符 */}, readString: function(){ /*读取携带''或""的字符串*/ }};

 这里指出一点,因为是表达式。所以类似"123"这类的东西,在Lexer看来应该算是数字而非字符串。表达式中的字符串必须使用单引号或者双引号来标识。Lexer的核心逻辑在lex方法中:

lex: function(text) { this.text = text; this.index = 0; this.tokens = []; while (this.index < this.text.length) {  var ch = this.text.charAt(this.index);  if (ch === '"' || ch === "'") {  /* 尝试判断是否是字符串 */  this.readString(ch);  } else if (this.isNumber(ch) || ch === '.' && this.isNumber(this.peek())) {  /* 尝试判断是否是数字 */  this.readNumber();  } else if (this.isIdent(ch)) {  /* 尝试判断是否是字母 */  this.readIdent();  } else if (this.is(ch, '(){}[].,;:?')) {  /* 判断是否是(){}[].,;:? */  this.tokens.push({index: this.index, text: ch});  this.index++;  } else if (this.isWhitespace(ch)) {  /* 判断是否是空白符 */  this.index++;  } else {  /* 尝试匹配操作运算 */  var ch2 = ch + this.peek();  var ch3 = ch2 + this.peek(2);  var op1 = OPERATORS[ch];  var op2 = OPERATORS[ch2];  var op3 = OPERATORS[ch3];  if (op1 || op2 || op3) {   var token = op3 ? ch3 : (op2 ? ch2 : ch);   this.tokens.push({index: this.index, text: token, operator: true});   this.index += token.length;  } else {   this.throwError('Unexpected next character ', this.index, this.index + 1);  }  } } return this.tokens; }

主要看一下匹配操作运算。这里源码中会调用OPERATORS。看一下OPERATORS:

var OPERATORS = extend(createMap(), { '+':function(self, locals, a, b) {  a=a(self, locals); b=b(self, locals);  if (isDefined(a)) {  if (isDefined(b)) {   return a + b;  }  return a;  }  return isDefined(b) ? b : undefined;}, '-':function(self, locals, a, b) {   a=a(self, locals); b=b(self, locals);   return (isDefined(a) ? a : 0) - (isDefined(b) ? b : 0);  }, '*':function(self, locals, a, b) {return a(self, locals) * b(self, locals);}, '/':function(self, locals, a, b) {return a(self, locals) / b(self, locals);}, '%':function(self, locals, a, b) {return a(self, locals) % b(self, locals);}, '===':function(self, locals, a, b) {return a(self, locals) === b(self, locals);}, '!==':function(self, locals, a, b) {return a(self, locals) !== b(self, locals);}, '==':function(self, locals, a, b) {return a(self, locals) == b(self, locals);}, '!=':function(self, locals, a, b) {return a(self, locals) != b(self, locals);}, '<':function(self, locals, a, b) {return a(self, locals) < b(self, locals);}, '>':function(self, locals, a, b) {return a(self, locals) > b(self, locals);}, '<=':function(self, locals, a, b) {return a(self, locals) <= b(self, locals);}, '>=':function(self, locals, a, b) {return a(self, locals) >= b(self, locals);}, '&&':function(self, locals, a, b) {return a(self, locals) && b(self, locals);}, '||':function(self, locals, a, b) {return a(self, locals) || b(self, locals);}, '!':function(self, locals, a) {return !a(self, locals);}, //Tokenized as operators but parsed as assignment/filters '=':true, '|':true});

可以看到OPERATORS实际上存储的是操作符和操作符函数的键值对。根据操作符返回对应的操作符函数。我们看一下调用例子:

var _l = new Lexer({});var a = _l.lex("a = a + 1");console.log(a);

 结合之前的lex方法,我们来回顾下代码执行过程:

1.index指向'a'是一个字母。匹配isIdent成功。将生成的token存入tokens中

2.index指向空格符,匹配isWhitespace成功,同上

3.index指向=,匹配操作运算符成功,同上

4.index指向空格符,匹配isWhitespace成功,同上

5.index指向'a'是一个字母。匹配isIdent成功。同上

7.index指向+,匹配操作运算符成功,同上

8.index指向空格符,匹配isWhitespace成功,同上

9.index指向1,匹配数字成功,同上

以上则是"a = a + 1"的代码执行过程。9步执行结束之后,跳出while循环。刚才我们看到了,每次匹配成功,源码会生成一个token。因为匹配类型的不同,生成出来的token的键值对略有不同:

number:{  index: start,  text: number,  constant: true,  value: Number(number) },string: {   index: start,   text: rawString,   constant: true,   value: string  },ident: {  index: start,  text: this.text.slice(start, this.index),  identifier: true /* 字符表示 */  },'(){}[].,;:?': { index: this.index, text: ch},"操作符": {  index: this.index,   text: token,   operator: true}//text是表达式,而value才是实际的值

number和string其实都有相对应的真实值,意味着如果我们表达式是2e2,那number生成的token的值value就应该是200。到此我们通过lexer类获得了一个具有token值得数组。从外部看,实际上Lexer是将我们输入的表达式解析成了token json。可以理解为生成了表达式的语法树(AST)。但是目前来看,我们依旧还没有能获得我们定义表达式的结果。那就需要用到parser了。

2.Parser

先看一下Parser的内部结构:

//构造函数var Parser = function(lexer, $filter, options) { this.lexer = lexer; this.$filter = $filter; this.options = options;};//原型Parser.prototype = { constructor: Parser, parse: function(){}, primary: function(){}, throwError: function(){ /* 语法抛错 */}, peekToken: function(){}, peek: function(){/*返回tokens中的第一个成员对象 */}, peekAhead: function(){ /* 返回tokens中指定成员对象,否则返回false */}, expect: function(){ /* 取出tokens中第一个对象,否则返回false */ }, consume: function(){ /* 取出第一个,底层调用expect */ }, unaryFn: function(){ /* 一元操作 */}, binaryFn: function(){ /* 二元操作 */}, identifier: function(){}, constant: function(){}, statements: function(){}, filterChain: function(){}, filter: function(){}, expression: function(){}, assignment: function(){}, ternary: function(){}, logicalOR: function(){ /* 逻辑或 */}, logicalAND: function(){ /* 逻辑与 */ }, equality: function(){ /* 等于 */ }, relational: function(){ /* 比较关系 */ }, additive: function(){ /* 加法,减法 */ }, multiplicative: function(){ /* 乘法,除法,求余 */ }, unary: function(){ /* 一元 */ }, fieldAccess: function(){}, objectIndex: function(){}, functionCall: function(){}, arrayDeclaration: function(){}, object: function(){}}

Parser的入口方法是parse,内部执行了statements方法。来看下statements:

statements: function() { var statements = []; while (true) {  if (this.tokens.length > 0 && !this.peek('}', ')', ';', ']'))  statements.push(this.filterChain());  if (!this.expect(';')) {  // optimize for the common case where there is only one statement.  // TODO(size): maybe we should not support multiple statements?  return (statements.length === 1)   ? statements[0]   : function $parseStatements(self, locals) {    var value;    for (var i = 0, ii = statements.length; i < ii; i++) {     value = statements[i](self, locals);    }    return value;    };  } } }

这里我们将tokens理解为表达式,实际上它就是经过表达式通过lexer转换过来的。statements中。如果表达式不以},),;,]开头,将会执行filterChain方法。当tokens检索完成之后,最后返回了一个$parseStatements方法。其实Parser中很多方法都返回了类似的对象,意味着返回的内容将需要执行后才能得到结果。

看一下filterChain:

filterChain: function() { /* 针对angular语法的filter */ var left = this.expression(); var token; while ((token = this.expect('|'))) {  left = this.filter(left); } return left; }

其中filterChain是针对angular表达式独有的"|"filter写法设计的。我们先绕过这块,进入expression

expression: function() { return this.assignment(); }

再看assignment:

assignment: function() { var left = this.ternary(); var right; var token; if ((token = this.expect('='))) {  if (!left.assign) {  this.throwError('implies assignment but [' +   this.text.substring(0, token.index) + '] can not be assigned to', token);  }  right = this.ternary();  return extend(function $parseAssignment(scope, locals) {  return left.assign(scope, right(scope, locals), locals);  }, {  inputs: [left, right]  }); } return left; }

我们看到了ternary方法。这是一个解析三目操作的方法。与此同时,assignment将表达式以=划分成left和right两块。并且两块都尝试执行ternary。

ternary: function() { var left = this.logicalOR(); var middle; var token; if ((token = this.expect('?'))) {  middle = this.assignment();  if (this.consume(':')) {  var right = this.assignment();  return extend(function $parseTernary(self, locals) {   return left(self, locals) ? middle(self, locals) : right(self, locals);  }, {   constant: left.constant && middle.constant && right.constant  });  } } return left; }

在解析三目运算之前,又根据?将表达式划分成left和right两块。左侧再去尝试执行logicalOR,实际上这是一个逻辑与的解析,按照这个执行流程,我们一下有了思路。这有点类似我们一般写三目时。代码的执行情况,比如: 2 > 2 ? 1 : 0。如果把这个当成表达式,那根据?划分left和right,left就应该是2 > 2,right应该就是 1: 0。然后尝试在left看是否有逻辑或的操作。也就是,Parser里面的方法调用的嵌套级数越深,其方法的优先级则越高。好,那我们一口气看看这个最高的优先级在哪?

logicalOR -> logicalAND -> equality -> relational -> additive -> multiplicative -> unary

好吧,嵌套级数确实有点多。那么我们看下unary。

unary: function() { var token; if (this.expect('+')) {  return this.primary(); } else if ((token = this.expect('-'))) {  return this.binaryFn(Parser.ZERO, token.text, this.unary()); } else if ((token = this.expect('!'))) {  return this.unaryFn(token.text, this.unary()); } else {  return this.primary(); } }

这边需要看两个主要的方法,一个是binaryFn和primay。如果判断是-,则必须通过binaryFn去添加函数。看下binaryFn

binaryFn: function(left, op, right, isBranching) { var fn = OPERATORS[op]; return extend(function $parseBinaryFn(self, locals) {  return fn(self, locals, left, right); }, {  constant: left.constant && right.constant,  inputs: !isBranching && [left, right] }); }

其中OPERATORS是之前聊Lexer也用到过,它根据操作符存储相应的操作函数。看一下fn(self, locals, left, right)。而我们随便取OPERATORS中的一个例子:

'-':function(self, locals, a, b) {   a=a(self, locals); b=b(self, locals);   return (isDefined(a) ? a : 0) - (isDefined(b) ? b : 0);  }

其中a和b就是left和right,他们其实都是返回的跟之前类似的$parseStatements方法。默认存储着token中的value。经过事先解析好的四则运算来生成最终答案。其实这就是Parser的基本功能。至于嵌套,我们可以把它理解为js的操作符的优先级。这样就一目了然了。至于primay方法。塔刷选{ ( 对象做进一步的解析过程。

Parser的代码并不复杂,只是函数方法间调用密切,让我们再看一个例子:

var _l = new Lexer({});var _p = new Parser(_l);var a = _p.parse("1 + 1 + 2");console.log(a()); //4

我们看下1+1+2生成的token是什么样的:

[{"index":0,"text":"1","constant":true,"value":1},{"index":2,"text":"+","operator":true},{"index":4,"text":"1","constant":true,"value":1},{"index":6,"text":"+","operator":true},{"index":8,"text":"2","constant":true,"value":2}]

Parser根据lexer生成的tokens尝试解析。tokens每一个成员都会生成一个函数,其先后执行逻辑按照用户输入的1+1+2的顺序执行。注意像1和2这类constants为true的token,parser会通过constant生成需要的函数$parseConstant,也就是说1+1+2中的两个1和一个2都是返回$parseConstant函数,通过$parseBinaryFn管理加法逻辑。

constant: function() { var value = this.consume().value; return extend(function $parseConstant() {  return value; //这个函数执行之后,就是将value值返回。 }, {  constant: true,  literal: true }); },binaryFn: function(left, op, right, isBranching) { var fn = OPERATORS[op];//加法逻辑 return extend(function $parseBinaryFn(self, locals) {  return fn(self, locals, left, right);//left和right分别表示生成的对应函数 }, {  constant: left.constant && right.constant,  inputs: !isBranching && [left, right] }); }

那我们demo中的a应该返回什么函数呢?当然是$parseBinaryFn。其中的left和right分别是1+1的$parseBinaryFn,right就是2的$parseConstant。

再来一个例子:

var _l = new Lexer({});var _p = new Parser(_l);var a = _p.parse('{"name": "hello"}');console.log(a);

这边我们传入一个json,理论上我们执行完a函数,应该返回一个{name: "hello"}的对象。它调用了Parser中的object

object: function() { var keys = [], valueFns = []; if (this.peekToken().text !== '}') {  do {  if (this.peek('}')) {   // Support trailing commas per ES5.1.   break;  }  var token = this.consume();  if (token.constant) {   //把key取出来   keys.push(token.value);  } else if (token.identifier) {   keys.push(token.text);  } else {   this.throwError("invalid key", token);  }  this.consume(':');  //冒号之后,则是值,将值存在valueFns中  valueFns.push(this.expression());  //根据逗号去迭代下一个  } while (this.expect(',')); } this.consume('}'); return extend(function $parseObjectLiteral(self, locals) {  var object = {};  for (var i = 0, ii = valueFns.length; i < ii; i++) {  object[keys[i]] = valueFns[i](self, locals);  }  return object; }, {  literal: true,  constant: valueFns.every(isConstant),  inputs: valueFns }); }

比方我们的例子{"name": "hello"},object会将name存在keys中,hello则会生成$parseConstant函数存在valueFns中,最终返回$parseObjectLiternal函数。

下一个例子:

var a = _p.parse('{"name": "hello"}["name"]');

这个跟上一个例子的差别在于后面尝试去读取name的值,这边则调用parser中的objectIndex方法。

objectIndex: function(obj) { var expression = this.text; var indexFn = this.expression(); this.consume(']'); return extend(function $parseObjectIndex(self, locals) {  var o = obj(self, locals), //parseObjectLiteral,实际就是obj   i = indexFn(self, locals), //$parseConstant,这里就是name   v;  ensureSafeMemberName(i, expression);  if (!o) return undefined;  v = ensureSafeObject(o[i], expression);  return v; }, {  assign: function(self, value, locals) {  var key = ensureSafeMemberName(indexFn(self, locals), expression);  // prevent overwriting of Function.constructor which would break ensureSafeObject check  var o = ensureSafeObject(obj(self, locals), expression);  if (!o) obj.assign(self, o = {}, locals);  return o[key] = value;  } }); }

很简单吧,obj[xx]和obj.x类似。大家自行阅读,我们再看一个函数调用的demo

var _l = new Lexer({});var _p = new Parser(_l, '', {});var demo = { "test": function(){ alert("welcome"); }};var a = _p.parse('test()');console.log(a(demo));

我们传入一个test的调用。这边调用了parser中的functionCall方法和identifier方法

identifier: function() { var id = this.consume().text; //Continue reading each `.identifier` unless it is a method invocation while (this.peek('.') && this.peekAhead(1).identifier && !this.peekAhead(2, '(')) {  id += this.consume().text + this.consume().text; } return getterFn(id, this.options, this.text); }

看一下getterFn方法

...forEach(pathKeys, function(key, index) {  ensureSafeMemberName(key, fullExp);  var lookupJs = (index      // we simply dereference 's' on any .dot notation      ? 's'      // but if we are first then we check locals first, and if so read it first      : '((l&&l.hasOwnProperty("' + key + '"))?l:s)') + '.' + key;  if (expensiveChecks || isPossiblyDangerousMemberName(key)) {  lookupJs = 'eso(' + lookupJs + ', fe)';  needsEnsureSafeObject = true;  }  code += 'if(s == null) return undefined;/n' +    's=' + lookupJs + ';/n'; }); code += 'return s;'; /* jshint -W054 */ var evaledFnGetter = new Function('s', 'l', 'eso', 'fe', code); // s=scope, l=locals, eso=ensureSafeObject /* jshint +W054 */ evaledFnGetter.toString = valueFn(code);...

这是通过字符串创建一个匿名函数的方法。我们看下demo的test生成了一个什么匿名函数:

function('s', 'l', 'eso', 'fe'){if(s == null) return undefined;s=((l&&l.hasOwnProperty("test"))?l:s).test;return s;}

这个匿名函数的意思,需要传入一个上下文,匿名函数通过查找上下文中是否有test属性,如果没有传上下文则直接返回未定义。这也就是为什么我们在生成好的a函数在执行它时需要传入demo对象的原因。最后补一个functionCall

functionCall: function(fnGetter, contextGetter) { var argsFn = []; if (this.peekToken().text !== ')') {  /* 确认调用时有入参 */  do {  //形参存入argsFn  argsFn.push(this.expression());  } while (this.expect(',')); } this.consume(')'); var expressionText = this.text; // we can safely reuse the array across invocations var args = argsFn.length ? [] : null; return function $parseFunctionCall(scope, locals) {  var context = contextGetter ? contextGetter(scope, locals) : isDefined(contextGetter) ? undefined : scope;  //或者之前创建生成的匿名函数  var fn = fnGetter(scope, locals, context) || noop;  if (args) {  var i = argsFn.length;  while (i--) {   args[i] = ensureSafeObject(argsFn[i](scope, locals), expressionText);  }  }  ensureSafeObject(context, expressionText);  ensureSafeFunction(fn, expressionText);  // IE doesn't have apply for some native functions  //执行匿名函数的时候需要传入上下文  var v = fn.apply   ? fn.apply(context, args)   : fn(args[0], args[1], args[2], args[3], args[4]);  if (args) {  // Free-up the memory (arguments of the last function call).  args.length = 0;  }  return ensureSafeObject(v, expressionText);  }; }

下面我们看一下$ParseProvider,这是一个基于Lex和Parser函数的angular内置provider。它对scope的api提供了基础支持。

...return function $parse(exp, interceptorFn, expensiveChecks) {  var parsedExpression, oneTime, cacheKey;  switch (typeof exp) {  case 'string':   cacheKey = exp = exp.trim();   var cache = (expensiveChecks ? cacheExpensive : cacheDefault);   parsedExpression = cache[cacheKey];   if (!parsedExpression) {   if (exp.charAt(0) === ':' && exp.charAt(1) === ':') {    oneTime = true;    exp = exp.substring(2);   }   var parseOptions = expensiveChecks ? $parseOptionsExpensive : $parseOptions;   //调用lexer和parser   var lexer = new Lexer(parseOptions);   var parser = new Parser(lexer, $filter, parseOptions);   parsedExpression = parser.parse(exp);   //添加$$watchDelegate,为scope部分提供支持   if (parsedExpression.constant) {    parsedExpression.$$watchDelegate = constantWatchDelegate;   } else if (oneTime) {    //oneTime is not part of the exp passed to the Parser so we may have to    //wrap the parsedExpression before adding a $$watchDelegate    parsedExpression = wrapSharedExpression(parsedExpression);    parsedExpression.$$watchDelegate = parsedExpression.literal ?    oneTimeLiteralWatchDelegate : oneTimeWatchDelegate;   } else if (parsedExpression.inputs) {    parsedExpression.$$watchDelegate = inputsWatchDelegate;   }   //做相关缓存   cache[cacheKey] = parsedExpression;   }   return addInterceptor(parsedExpression, interceptorFn);  case 'function':   return addInterceptor(exp, interceptorFn);  default:   return addInterceptor(noop, interceptorFn);  } };

总结:Lexer和Parser的实现确实让我大开眼界。通过这两个函数,实现了angular自己的语法解析器。逻辑部分还是相对复杂

以上所述是小编给大家介绍的Angularjs 1.3 中的$parse实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对武林网网站的支持!

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表