首页 > 编程 > JavaScript > 正文

详解基于Node.js的HTTP/2 Server实践

2019-11-19 13:44:34
字体:
来源:转载
供稿:网友

虽然HTTP/2目前已经逐渐的在各大网站上开始了使用,但是在目前最新的Node.js上仍然处于实验性API,还没有能有效解决生产环境各种问题的应用示例。因此在应用HTTP/2的道路上我自己也遇到了许多坑,下面介绍了项目的主要架构与开发中遇到的问题及解决方式,也许会对你有一点点启示。

配置

虽然W3C的规范中没有规定HTTP/2协议一定要使用ssl加密,但是支持非加密的HTTP/2协议的浏览器实在少的可怜,因此我们有必要申请一个自己的域名和一个ssl证书。

本项目的测试域名是 you.keyin.me ,首先我们去域名提供商那把测试服务器的地址绑定到这个域名上。然后使用Let's Encrypt生成一个免费的SSL证书:

sudo certbot certonly --standalone -d you.keyin.me

输入必要信息并通过验证之后就可以在 /etc/letsencrypt/live/you.keyin.me/ 下面找到生成的证书了。

改造Koa

Koa是一个非常简洁高效的Node.js服务器框架,我们可以简单改造一下来让它支持HTTP/2协议:

class KoaOnHttps extends Koa { constructor() {  super(); } get options() {  return {   key: fs.readFileSync(require.resolve('/etc/letsencrypt/live/you.keyin.me/privkey.pem')),   cert: fs.readFileSync(require.resolve('/etc/letsencrypt/live/you.keyin.me/fullchain.pem'))  }; } listen(...args) {  const server = http2.createSecureServer(this.options, this.callback());  return server.listen(...args); } redirect(...args) {  const server = http.createServer(this.callback());  return server.listen(...args); }}const app = new KoaOnHttps();app.use(sslify());//...app.listen(443, () => {logger.ok('app start at:', `https://you.keyin.cn`);});// receive all the http request, redirect them to httpsapp.redirect(80, () => {logger.ok('http redirect server start at', `http://you.keyin.me`);});

上述代码简单基于Koa生成了一个HTTP/2服务器,并同时监听80端口,通过sslify中间件的帮助自动将http协议的连接重定向到https协议。

静态文件中间件

静态文件中间件主要用来返回url所指向的本地静态资源。在http/2服务器中我们可以在访问html资源的时候通过服务器推送(Server push)将该页面所依赖的js/css/font等资源一起推送回去。具体代码如下:

const send = require('koa-send');const logger = require('../util/logger');const { push, acceptsHtml } = require('../util/helper');const depTree = require('../util/depTree');module.exports = (root = '') => { return async function serve(ctx, next) {  let done = false;  if (ctx.method === 'HEAD' || ctx.method === 'GET') {   try {    // 当希望收到html时,推送额外资源。    if (/(/.html|//[/w-]*)$/.test(ctx.path)) {     depTree.currentKey = ctx.path;     const encoding = ctx.acceptsEncodings('gzip', 'deflate', 'identity');     // server push     for (const file of depTree.getDep()) {      // server push must before response!      // https://huangxuan.me/2017/07/12/upgrading-eleme-to-pwa/#fast-skeleton-painting-with-settimeout-hack      push(ctx.res.stream, file, encoding);     }    }    done = await send(ctx, ctx.path, { root });   } catch (err) {    if (err.status !== 404) {     logger.error(err);     throw err;    }   }  }  if (!done) {   await next();  } };};

需要注意的是,推送的发生永远要先于当前页面的返回。否则服务器推送与客户端请求可能就会出现竞争的情况,降低传输效率。

依赖记录

从静态文件中间件代码中我们可以看到,服务器推送资源取自depTree这个对象,它是一个依赖记录工具,记录当前页面 depTree.currentKey 所有依赖的静态资源(js,css,img...)路径。具体的实现是:

const logger = require('./logger');const db = new Map();let currentKey = '/';module.exports = {  get currentKey() {    return currentKey;  },  set currentKey(key = '') {    currentKey = this.stripDot(key);  },  stripDot(str) {    if (!str) return '';    return str.replace(/index/.html$/, '').replace(//./g, '-');  },  addDep(filePath, url, key = this.currentKey) {    if (!key) return;    key = this.stripDot(key);    if(!db.has(key)){      db.set(key,new Map());    }    const keyDb = db.get(key);    if (keyDb.size >= 10) {      logger.warning('Push resource limit exceeded');      return;    }    keyDb.set(filePath, url);  },  getDep(key = this.currentKey) {    key = this.stripDot(key);    const keyDb = db.get(key);    if(keyDb == undefined) return [];    const ret = [];    for(const [filePath,url] of keyDb.entries()){      ret.push({filePath,url});    }    return ret;  }};

当设置好特定的当前页 currentKey 后,调用 addDep 将方法能够为当前页面添加依赖,调用 getDep 方法能够取出当前页面的所有依赖。 addDep 方法需要写在路由中间件中,监控所有需要推送的静态文件请求得出依赖路径并记录下来:

router.get(//.(js|css)$/, async (ctx, next) => { let filePath = ctx.path; if (///sw-register/.js/.test(filePath)) return await next(); filePath = path.resolve('../dist', filePath.substr(1)); await next(); if (ctx.status === 200 || ctx.status === 304) {  depTree.addDep(filePath, ctx.url); }});

服务器推送

Node.js最新的API文档中已经简单描述了服务器推送的写法,实现很简单:

exports.push = function(stream, file) { if (!file || !file.filePath || !file.url) return; file.fd = file.fd || fs.openSync(file.filePath, 'r'); file.headers = file.headers || getFileHeaders(file.filePath, file.fd); const pushHeaders = {[HTTP2_HEADER_PATH]: file.url}; stream.pushStream(pushHeaders, (err, pushStream) => {  if (err) {   logger.error('server push error');   throw err;  }  pushStream.respondWithFD(file.fd, file.headers); });};

stream 代表的是当前HTTP请求的响应流, file 是一个对象,包含文件路径 filePath 与文件资源链接 url 。先使用 stream.pushStream 方法推送一个 PUSH_PROMISE 帧,然后在回调函数中调用 responseWidthFD 方法推送具体的文件内容。

以上写法简单易懂,也能立即见效。网上很多文章介绍到这里就没有了。但是如果你真的拿这样的HTTP/2服务器与普通的HTTP/1.x服务器做比较的话,你会发现现实并没有你想象的那么美好,尽管HTTP/2理论上能够加快传输效率,但是HTTP/1.x总共传输的数据明显比HTTP/2要小得多。最终两者相比较起来其实还是HTTP/1.x更快。

Why?

答案就在于资源压缩(gzip/deflate)上,基于Koa的服务器能够很轻松的用上 koa-compress 这个中间件来对文本等静态资源进行压缩,然而尽管Koa的洋葱模型能够保证所有的HTTP返回的文件数据流经这个中间件,却对于服务器推送的资源来说鞭长莫及。这样造成的后果是,客户端主动请求的资源都经过了必要的压缩处理,然而服务器主动推送的资源却都是一些未压缩过的数据。也就是说,你的服务器推送资源越大,不必要的流量浪费也就越大。新的服务器推送的特性反而变成了负优化。

因此,为了尽可能的加快服务器数据传输的速度,我们只有在上方 push 函数中手动对文件进行压缩。改造后的代码如下,以gzip为例。

exports.push = function(stream, file) { if (!file || !file.filePath || !file.url) return; file.fd = file.fd || fs.openSync(file.filePath, 'r'); file.headers = file.headers || getFileHeaders(file.filePath, file.fd); const pushHeaders = {[HTTP2_HEADER_PATH]: file.url}; stream.pushStream(pushHeaders, (err, pushStream) => {  if (err) {   logger.error('server push error');   throw err;  }  if (shouldCompress()) {   const header = Object.assign({}, file.headers);   header['content-encoding'] = "gzip";   delete header['content-length'];      pushStream.respond(header);   const fileStream = fs.createReadStream(null, {fd: file.fd});   const compressTransformer = zlib.createGzip(compressOptions);   fileStream.pipe(compressTransformer).pipe(pushStream);  } else {   pushStream.respondWithFD(file.fd, file.headers);  } });};

我们通过 shouldCompress 函数判断当前资源是否需要进行压缩,然后调用 pushStream.response(header) 先返回当前资源的 header 帧,再基于流的方式来高效返回文件内容:

  1. 获取当前文件的读取流 fileStream
  2. 基于 zlib 创建一个可以动态gzip压缩的变换流 compressTransformer
  3. 将这些流依次通过管道( pipe )传到最终的服务器推送流 pushStream 中

Bug

经过上述改造,同样的请求HTTP/2服务器与HTTP/1.x服务器的返回总体资源大小基本保持了一致。在Chrome中能够顺畅打开。然而进一步使用Safari测试时却返回HTTP 401错误,另外打开服务端日志也能发现存在一些红色的异常报错。

经过一段时间的琢磨,我最终发现了问题所在:因为服务器推送的推送流是一个特殊的可中断流,当客户端发现当前推送的资源目前不需要或者本地已有缓存的版本,就会给服务器发送 RST 帧,用来要求服务器中断掉当前资源的推送。服务器收到该帧之后就会立即把当前的推送流( pushStream )设置为关闭状态,然而普通的可读流都是不可中断的,包括上述代码中通过管道连接到它的文件读取流( fileStream ),因此服务器日志里的报错就来源于此。另一方面对于浏览器具体实现而言,W3C标准里并没有严格规定客户端这种情况应该如何处理,因此才出现了继续默默接收后续资源的Chrome派与直接激进报错的Safari派。

解决办法很简单,在上述代码中插入一段手动中断可读流的逻辑即可。

//...fileStream.pipe(compressTransformer).pipe(pushStream);pushStream.on('close', () => fileStream.destroy());//...

即监听推送流的关闭事件,手动撤销文件读取流。

最后

本项目代码开源在Github上,如果觉得对你有帮助希望能给我点个Star。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持武林网。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表