1 矩不变阈值分割法介绍矩是随机变量的数学特征。矩法是由 Karl pearson在1894年引入的参数点估计算法,其基本思想是:样本抽自总体,样本的矩在一定程度上反映了总体的矩。因此可以用样本矩函数的估计作为相应的总体矩函数的估计量。矩法是一种效率较高的正态性检验方法。具体作法是:样本矩作为相应总体矩的估计量;以样本矩的函数作为相应的总体矩同样函数的估计量。这种方法最常见的应用是用样本平均数估计总体数学期望。从统计学观点来看,图像可以看作是二维随机过程(随机场)中的一个样本,这个样本可以看作是理想图像的模糊视觉,其特性反映了总体的特性。从统计的角度来看,分割就是由样本估计总体的特征,由样本的分布估计总体的分布,分割本身也是对整体的一种描述和估计,是一个参数估计的问题,可以用参数估计的方法进行目标图像的分割。矩不变阈值分割法就是把矩法用于图像的分割,其基本思想是:使阈值分割前后,图像的矩保持不变[3]。矩不变阈值法可以看作是一种图像变换,它将原始模糊图像变换成理想图像。二维图像的第k阶矩mk定义为: