首页 > 学院 > 开发设计 > 正文

【原创】Lucene.Net+盘古分词器(详细介绍)

2019-11-17 01:41:38
字体:
来源:转载
供稿:网友

【原创】Lucene.Net+盘古分词器(详细介绍)

本章阅读概要

1、Lucenne.Net简介

2、介绍盘古分词器

3、Lucene.Net实例分析

4、结束语(Demo下载)

Lucene.Net简介

  Lucene.net是Lucene的.net移植版本,是一个开源的全文检索引擎开发包,即它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎。开发人员可以基于Lucene.net实现全文检索的功能。   

  Lucene.net是Apache软件基金会赞助的开源项目,基于Apache License协议。   

  Lucene.net并不是一个爬行搜索引擎,也不会自动地索引内容。我们得先将要索引的文档中的文本抽取出来,然后再将其加到Lucene.net索引中。标准的步骤是先初始化一个Analyzer、打开一个IndexWriter、然后再将文档一个接一个地加进去。一旦完成这些步骤,索引就可以在关闭前得到优化,同时所做的改变也会生效。这个过程可能比开发者习惯的方式更加手工化一些,但却在数据的索引上给予你更多的灵活性。

(来自百度百科)

盘古分词器

盘古分词是一个中英文分词组件。作者eaglet 曾经开发过KTDictSeg 中文分词组件,拥有大量用户。作者基于之前分词组件的开发经验,结合最新的开发技术重新编写了盘古分词组件。主要有以下功能:

1、中文未登陆词识别

2、词频优先

3、一元分词,多元分词

4、中文人名分词

5、繁体中文分词

6、英文分词

7、用户自定义规则(字典管理,动态加载字典,关键词高亮)

……

由于盘古分词器不是本章的重点内容,就简单带过了。有兴趣的朋友可以自己网上找找相关资料。文章末尾会提供一个盘古分词器的应用程序供下载

Lucene.Net实例分析

先上一下Demo的图把,看下最后运行效果:

数据是临时随便创建的数据,表格和样式也是随便画的,不喜欢的朋友多包涵呐!

接下来就一步一步来讲解整个编码过程(主要对一些核心的类和细节作为讲解过程),Let's GO

第一步:创建索引

1、由于索引是存放在硬盘里的,所以先定义一个索引的目录

 1         /// <summary> 2         /// 索引存放目录 3         /// </summary> 4         PRotected string IndexDic 5         { 6             get 7             { 8                 return Server.MapPath("/IndexDic"); 9             }10         }

2、创建索引器把要索引的内容写入到指定目录

?
1IndexWriter writer = new IndexWriter(IndexDic, PanGuAnalyzer, isCreate, Lucene.Net.Index.IndexWriter.MaxFieldLength.LIMITED);

索引器的构造函数参数说明:

IndexDic是索引存放目录

PanGuAnalyzer是盘古解析器(由于默认的解析器解析能力不强,所以替换为这个)

IsCreate是索引创建方式(true:重新新建索引,false:从旧的索引执行追加)

Lucene.Net.Index.IndexWriter.MaxFieldLength.LIMITED是文件长度是否限制

3、创建索引Document和往文档写入索引内容

 1         private void AddIndex(IndexWriter writer, string title, string content,string date) 2         { 3             try 4             { 5                 Document doc = new Document(); 6                 doc.Add(new Field("Title", title, Field.Store.YES, Field.Index.ANALYZED));//存储且索引 7                 doc.Add(new Field("Content", content, Field.Store.YES, Field.Index.ANALYZED));//存储且索引 8                 doc.Add(new Field("AddTime", date, Field.Store.YES, Field.Index.NOT_ANALYZED));//存储且索引 9                 writer.AddDocument(doc);10             }11             catch (FileNotFoundException fnfe)12             {13                 throw fnfe;14             }15             catch (Exception ex)16             {17                 throw ex;18             }19         }

Document是索引文档,可以理解成数据库里的记录

Field是索引文档里的字段,可以直接理解成数据库里的字段

Field构造函数说明:

第一个是字段名称(实例里是Title,Content,AddTime)。

第二个是字段的存储方式(Field.Store.YES:进行存储,Filed.Store.No:不进行存储)有些字段值比较大,可以选择No不存储,对字段进行存储是为了检索的时候对某些字段进行提取。

第三个是是否索引(Field.Index.ANALYZED:索引,Field.Index.NOT_ANALYZED:非索引)

4、到此为止索引就创建完成了,应该可以看到索引目录会产生几个文件,如下图:

第二步:搜索索引

lucene的搜索相当强大,它提供了很多辅助查询类,每个类都继承自Query类,各自完成一种特殊的查询,你可以像搭积木一样将它们任意组合使用,完成一些复杂操 作;另外lucene还提供了Sort类对结果进行排序,提供了Filter类对查询条件进行限制。你或许会不自觉地拿它跟SQL语句进行比 较:“lucene能执行and、or、order by、where、like ‘%xx%’操作吗?”回答是:“当然没问题!”

 1         private void SearchIndex() 2         { 3             Dictionary<string, string> dic = new Dictionary<string, string>(); 4             BooleanQuery bQuery = new BooleanQuery(); 5             string title = string.Empty; 6             string content = string.Empty; 7             if (Request.Form["title"] != null && Request.Form["title"].ToString()!="") 8             { 9                 title =GetKeyWordsSplitBySpace( Request.Form["title"].ToString());10                 QueryParser parse = new QueryParser("Title", PanGuAnalyzer);11                 Query query = parse.Parse(title);12                 parse.SetDefaultOperator(QueryParser.Operator.AND);13                 bQuery.Add(query, BooleanClause.Occur.MUST);14                 dic.Add("title",Request.Form["title"].ToString());15                 txtTitle = Request.Form["title"].ToString();16             }17             if (Request.Form["content"] != null && Request.Form["content"].ToString() != "")18             {19                 content = GetKeyWordsSplitBySpace(Request.Form["content"].ToString());20                 QueryParser parse = new QueryParser("Content", PanGuAnalyzer);21                 Query query = parse.Parse(content);22                 parse.SetDefaultOperator(QueryParser.Operator.AND);23                 bQuery.Add(query, BooleanClause.Occur.MUST);24                 dic.Add("content",Request.Form["content"].ToString());25                 txtContent = Request.Form["content"].ToString();26             }27             if (bQuery != null && bQuery.GetClauses().Length>0)28             {29                 GetSearchResult(bQuery, dic);30             }31         }

这段代码创建了一个索引查询器,对title和content这两个字段进行查询。

1、介绍各种Query

TermQuery: 首先介绍最基本的查询,如果你想执行一个这样的查询:在content字段中查询包含‘刘备的document”,那么你可以用TermQuery:

1             Term t = new Term("content", "刘备");2             Query query = new TermQuery(t);

BooleanQuery :如果你想这么查询:在content字段中包含”刘备“并且在title字段包含”三国“的document”,那么你可以建立两个TermQuery并把它们用BooleanQuery连接起来:

1             TermQuery termQuery1 = new TermQuery(new Term("content", "刘备"));2             TermQuery termQuery2 = new TermQuery(new Term("title", "三国"));3             BooleanQuery booleanQuery = new BooleanQuery();4             booleanQuery.Add(termQuery1, BooleanClause.Occur.SHOULD);5             booleanQuery.Add(termQuery2, BooleanClause.Occur.SHOULD);

WildcardQuery :如果你想对某单词进行通配符查询,你可以用WildcardQuery,通配符包括’?’匹配一个任意字符和’*’匹配零个或多个任意字符,例如你搜索’三国*’,你可能找到’三国演义’或者’三国志’:

1             Query query = new WildcardQuery(new Term("content", "三国*"));

PhraseQuery :你可能对中日关系比较感兴趣,想查找‘中’和‘日’挨得比较近(5个字的距离内)的文章,超过这个距离的不予考虑,你可以:

1             PhraseQuery query = new PhraseQuery(); 2             query.SetSlop(5); 3             query.Add(new Term("content ", "中"));4             query.Add(new Term("content", "日"));

那么它可能搜到“中日合作……”、“中方和日方……”,但是搜不到“中国某高层领导说日本欠扁”。

PrefixQuery :如果你想搜以‘中’开头的词语,你可以用PrefixQuery:

1             PrefixQuery query = new PrefixQuery(new Term("content ", "中"));

FuzzyQuery :FuzzyQuery用来搜索相似的term,使用Levenshtein算法。假设你想搜索跟‘wuzza’相似的词语,你可以:

1             Query query = new FuzzyQuery(new Term("content", "wuzza"));

你可能得到‘fuzzy’和‘wuzzy’。

RangeQuery: 另一个常用的Query是RangeQuery,你也许想搜索时间域从20060101到20060130之间的document,你可以用RangeQuery:

1             RangeQuery query = new RangeQuery(new Term("time","20060101"), new Term("time","20060130"), true);

最后的true表示用闭合区间。

第三步:返回索引结果

上面介绍完各种查询的Query,接下来看看LuceneNet返回的数据集如何处理,如何显示高亮,上代码:

 1 private void GetSearchResult(BooleanQuery bQuery,Dictionary<string,string> dicKeywords) 2         {           3             IndexSearcher search = new IndexSearcher(IndexDic,true); 4             Stopwatch stopwatch = Stopwatch.StartNew(); 5             //SortField构造函数第三个字段true为降序,false为升序 6             Sort sort = new Sort(new SortField("AddTime", SortField.DOC, true)); 7             TopDocs docs = search.Search(bQuery, (Filter)null, PageSize * PageIndex, sort); 8             stopwatch.Stop(); 9             if (docs != null && docs.totalHits > 0)10             {11                 lSearchTime = stopwatch.ElapsedMilliseconds;12                 txtPageFoot = GetPageFoot(Pa
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表