首页 > 学院 > 开发设计 > 正文

必须知道的八大种排序算法【java实现】(三) 归并排序算法、堆排序算法详解

2019-11-15 01:17:56
字体:
来源:转载
供稿:网友
必须知道的八大种排序算法【java实现】(三) 归并排序算法、堆排序算法详解

一、归并排序算法

基本思想:

  归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

归并排序示例:

合并方法:

设r[i…n]由两个有序子表r[i…m]和r[m+1…n]组成,两个子表长度分别为n-i +1、n-m。

    1. j=m+1;k=i;i=i; //置两个子表的起始下标及辅助数组的起始下标
    2. 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束
    3. //选取r[i]和r[j]较小的存入辅助数组rf如果r[i]<r[j],rf[k]=r[i]; i++; k++; 转⑵否则,rf[k]=r[j]; j++; k++; 转⑵
    4. //将尚未处理完的子表中元素存入rf如果i<=m,将r[i…m]存入rf[k…n] //前一子表非空如果j<=n , 将r[j…n] 存入rf[k…n] //后一子表非空
    5. 合并结束。

算法实现:

  /**     * 归并排序     * 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列     * 时间复杂度为O(nlogn)     * 稳定排序方式     * @param nums 待排序数组     * @return 输出有序数组     */    public static int[] sort(int[] nums, int low, int high) {        int mid = (low + high) / 2;        if (low < high) {            // 左边            sort(nums, low, mid);            // 右边            sort(nums, mid + 1, high);            // 左右归并            merge(nums, low, mid, high);        }        return nums;    }    /**     * 将数组中low到high位置的数进行排序     * @param nums 待排序数组     * @param low 待排的开始位置     * @param mid 待排中间位置     * @param high 待排结束位置     */    public static void merge(int[] nums, int low, int mid, int high) {        int[] temp = new int[high - low + 1];        int i = low;// 左指针        int j = mid + 1;// 右指针        int k = 0;        // 把较小的数先移到新数组中        while (i <= mid && j <= high) {            if (nums[i] < nums[j]) {                temp[k++] = nums[i++];            } else {                temp[k++] = nums[j++];            }        }        // 把左边剩余的数移入数组        while (i <= mid) {            temp[k++] = nums[i++];        }        // 把右边边剩余的数移入数组        while (j <= high) {            temp[k++] = nums[j++];        }        // 把新数组中的数覆盖nums数组        for (int k2 = 0; k2 < temp.length; k2++) {            nums[k2 + low] = temp[k2];        }    }

二、堆排序算法

1、基本思想:

  堆排序是一种树形选择排序,是对直接选择排序的有效改进。

  堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。

  思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

2、实例

初始序列:46,79,56,38,40,84

  建堆:

  交换,从堆中踢出最大数

依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

3.算法实现:

public class HeapSort {    public static void main(String[] args) {        int[] a={49,38,65,97,76,13,27,49,78,34,12,64};        int arrayLength=a.length;          //循环建堆          for(int i=0;i<arrayLength-1;i++){              //建堆              buildMaxHeap(a,arrayLength-1-i);              //交换堆顶和最后一个元素              swap(a,0,arrayLength-1-i);              System.out.PRintln(Arrays.toString(a));          }      }    //对data数组从0到lastIndex建大顶堆    public static void buildMaxHeap(int[] data, int lastIndex){         //从lastIndex处节点(最后一个节点)的父节点开始         for(int i=(lastIndex-1)/2;i>=0;i--){            //k保存正在判断的节点             int k=i;            //如果当前k节点的子节点存在              while(k*2+1<=lastIndex){                //k节点的左子节点的索引                 int biggerIndex=2*k+1;                //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在                if(biggerIndex<lastIndex){                      //若果右子节点的值较大                      if(data[biggerIndex]<data[biggerIndex+1]){                          //biggerIndex总是记录较大子节点的索引                          biggerIndex++;                      }                  }                  //如果k节点的值小于其较大的子节点的值                  if(data[k]<data[biggerIndex]){                      //交换他们                      swap(data,k,biggerIndex);                      //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值                      k=biggerIndex;                  }else{                      break;                  }              }        }    }    //交换    private static void swap(int[] data, int i, int j) {          int tmp=data[i];          data[i]=data[j];          data[j]=tmp;      } }

冒泡排序、快速排序可查看:http://www.VEVb.com/0201zcr/p/4763806.html

选择排序、插入排序、希尔排序可查看:http://www.VEVb.com/0201zcr/p/4764427.html

  致谢:感谢您的耐心阅读!


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表