首页 > 学院 > 开发设计 > 正文

Hadoop mapreduce自定义分组RawComparator

2019-11-14 22:41:39
字体:
来源:转载
供稿:网友
Hadoop maPReduce自定义分组RawComparator

本文发表于本人博客。

今天接着上次【Hadoop mapreduce自定义排序WritableComparable】文章写,按照顺序那么这次应该是讲解自定义分组如何实现,关于操作顺序在这里不多说了,需要了解的可以看看我在博客园的评论,现在开始。

首先我们查看下Job这个类,发现有setGroupingComparatorClass()这个方法,具体源码如下:

  /**   * Define the comparator that controls which keys are grouped together   * for a single call to    * {@link Reducer#reduce(Object, Iterable,    *                       org.apache.hadoop.mapreduce.Reducer.Context)}   * @param cls the raw comparator to use   * @throws IllegalStateException if the job is submitted   */  public void setGroupingComparatorClass(Class<? extends RawComparator> cls                                         ) throws IllegalStateException {    ensureState(JobState.DEFINE);    conf.setOutputValueGroupingComparator(cls);  }

从方法的源码可以看出这个方法是定义自定义键分组功能。设置这个自定义分组类必须满足extends RawComparator,那我们可以看下这个类的源码:

/** * <p> * A {@link Comparator} that Operates directly on byte representations of * objects. * </p> * @param <T> * @see DeserializerComparator */public interface RawComparator<T> extends Comparator<T> {  public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2);}

然而这个RawComparator是泛型继承Comparator接口的,简单看了下那我们来自定义一个类继承RawComparator,代码如下:

public class MyGrouper implements RawComparator<SortAPI> {    @Override    public int compare(SortAPI o1, SortAPI o2) {        return (int)(o1.first - o2.first);    }    @Override    public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {        int compareBytes = WritableComparator.compareBytes(b1, s1, 8, b2, s2, 8);        return compareBytes;    }    }

源码中SortAPI是上节自定义排序中的定义对象,第一个方法从注释可以看出是比较2个参数的大小,返回的是自然整数;第二个方法是在反序列化时比较,所以需要是用字节比较。接下来我们继续看看自定义MyMapper类:

public class MyMapper extends Mapper<LongWritable, Text, SortAPI, LongWritable> {        @Override    protected void map(LongWritable key, Text value,Context context) throws IOException, InterruptedException {        String[] splied = value.toString().split("/t");        try {            long first = Long.parseLong(splied[0]);            long second = Long.parseLong(splied[1]);            context.write(new SortAPI(first,second), new LongWritable(1));        } catch (Exception e) {            System.out.println(e.getMessage());        }    }    }

自定义MyReduce类:

public class MyReduce extends Reducer<SortAPI, LongWritable, LongWritable, LongWritable> {    @Override    protected void reduce(SortAPI key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {        context.write(new LongWritable(key.first), new LongWritable(key.second));    }    }

自定义SortAPI类:

public class SortAPI implements WritableComparable<SortAPI> {    public Long first;    public Long second;    public SortAPI(){            }    public SortAPI(long first,long second){        this.first = first;        this.second = second;    }    @Override    public int compareTo(SortAPI o) {        return (int) (this.first - o.first);    }    @Override    public void write(DataOutput out) throws IOException {        out.writeLong(first);        out.writeLong(second);    }    @Override    public void readFields(DataInput in) throws IOException {        this.first = in.readLong();        this.second = in.readLong();            }    @Override    public int hashCode() {        return this.first.hashCode() + this.second.hashCode();    }    @Override    public boolean equals(Object obj) {        if(obj instanceof SortAPI){            SortAPI o = (SortAPI)obj;            return this.first == o.first && this.second == o.second;        }        return false;    }        @Override    public String toString() {        return "输出:" + this.first + ";" + this.second;    }    }

接下来准备数据,数据如下:

1       21       13       03       22       21       2

上传至hdfs://hadoop-master:9000/grouper/input/test.txt,main代码如下:

public class Test {    static final String OUTPUT_DIR = "hdfs://hadoop-master:9000/grouper/output/";    static final String INPUT_DIR = "hdfs://hadoop-master:9000/grouper/input/test.txt";    public static void main(String[] args) throws Exception {        Configuration conf = new Configuration();        Job job = new Job(conf, Test.class.getSimpleName());            job.setJarByClass(Test.class);        deleteOutputFile(OUTPUT_DIR);        //1设置输入目录        FileInputFormat.setInputPaths(job, INPUT_DIR);        //2设置输入格式化类        job.setInputFormatClass(TextInputFormat.class);        //3设置自定义Mapper以及键值类型        job.setMapperClass(MyMapper.class);        job.setMapOutputKeyClass(SortAPI.class);        job.setMapOutputValueClass(LongWritable.class);        //4分区        job.setPartitionerClass(HashPartitioner.class);        job.setNumReduceTasks(1);        //5排序分组        job.setGroupingComparatorClass(MyGrouper.class);        //6设置在一定Reduce以及键值类型        job.setReducerClass(MyReduce.class);        job.setOutputKeyClass(LongWritable.class);        job.setOutputValueClass(LongWritable.class);        //7设置输出目录        FileOutputFormat.setOutputPath(job, new Path(OUTPUT_DIR));        //8提交job        job.waitForCompletion(true);    }        static void deleteOutputFile(String path) throws Exception{        Configuration conf = new Configuration();        FileSystem fs = FileSystem.get(new URI(INPUT_DIR),conf);        if(fs.exists(new Path(path))){            fs.delete(new Path(path));        }    }}

执行代码,然后在节点上用终端输入:hadoop fs -text /grouper/output/part-r-00000查看结果:

1       22       23       0

接下来我们修改下SortAPI类的compareTo()方法:

    @Override    public int compareTo(SortAPI o) {        long mis = (this.first - o.first) * -1;        if(mis != 0 ){            return (int)mis;        }        else{            return (int)(this.second - o.second);        }    }

再次执行并查看/grouper/output/part-r-00000文件:

3       02       21       1

这样我们就得出了同样的数据分组结果会受到排序算法的影响,比如排序是倒序那么分组也是先按照倒序数据源进行分组输出。我们还可以在map函数以及reduce函数中打印记录(过程省略)这样经过对比也得出分组阶段:键值对中key相同(即compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2)方法返回0)的则为一组,当前组再按照顺序选择第一个往缓冲区输出(也许会存储到硬盘)。其它的相同key的键值对就不会再往缓冲区输出了。在百度上检索到这边文章,其中它的分组是把map函数输出的value全部迭代到同一个key中,就相当于上面{key,value}:{1,{2,1,2}},这个结果跟最开始没有自定义分组时是一样的,我们可以在reduce函数输出Iterable<LongWritable> values进行查看,其实我觉得这样的才算是分组吧就像数据查询一样。

在这里我们应该要弄懂分组与分区的区别。分区是对输出结果文件进行分类拆分文件以便更好查看,比如一个输出文件包含所有状态的http请求,那么为了方便查看通过分区把请求状态分成几个结果文件。分组就是把一些相同键的键值对进行计算减少输出;分区之后数据全部还是照样输出到reduce端,而分组的话就有所减少了;当然这2个步骤也是不同的阶段执行。

这次先到这里。坚持记录点点滴滴!


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表