生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIteration异常结束。
生成器表达式: 通列表解析语法,只不过把列表解析的[]换成()
生成器表达式能做的事情列表解析基本都能处理,只不过在需要处理的序列比较大时,列表解析比较费内存。
>>> gen = (x**2 for x in range(5))>>> gen<generator object <genexPR> at 0x0000000002FB7B40>>>> for g in gen:... print(g, end='-')...0-1-4-9-16->>> for x in [0,1,2,3,4,5]:... print(x, end='-')...0-1-2-3-4-5-
生成器函数: 在函数中如果出现了yield关键字,那么该函数就不再是普通函数,而是生成器函数。
但是生成器函数可以生产一个无线的序列,这样列表根本没有办法进行处理。
yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator。
下面为一个可以无穷生产奇数的生成器函数。
def odd(): n=1 while True: yield n n+=2odd_num = odd()count = 0for o in odd_num: if count >=5: break print(o) count +=1
当然通过手动编写迭代器可以实现类似的效果,只不过生成器更加直观易懂
class Iter: def __init__(self): self.start=-1 def __iter__(self): return self def __next__(self): self.start +=2 return self.startI = Iter()for count in range(5): print(next(I))
题外话: 生成器是包含有__iter()和next__()方法的,所以可以直接使用for来迭代,而没有包含StopIteration的自编Iter来只能通过手动循环来迭代。
>>> from collections import Iterable>>> from collections import Iterator>>> isinstance(odd_num, Iterable)True>>> isinstance(odd_num, Iterator)True>>> iter(odd_num) is odd_numTrue>>> help(odd_num)Help on generator object:odd = class generator(object) | Methods defined here: | | __iter__(self, /) | Implement iter(self). | | __next__(self, /) | Implement next(self). ......
看到上面的结果,现在你可以很有信心的按照Iterator的方式进行循环了吧!
在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
>>> def g1():... yield 1...>>> g=g1()>>> next(g) #第一次调用next(g)时,会在执行完yield语句后挂起,所以此时程序并没有执行结束。1>>> next(g) #程序试图从yield语句的下一条语句开始执行,发现已经到了结尾,所以抛出StopIteration异常。Traceback (most recent call last): File "<stdin>", line 1, in <module>StopIteration>>>
>>> def g2():... yield 'a'... return... yield 'b'...>>> g=g2()>>> next(g) #程序停留在执行完yield 'a'语句后的位置。'a'>>> next(g) #程序发现下一条语句是return,所以抛出StopIteration异常,这样yield 'b'语句永远也不会执行。Traceback (most recent call last): File "<stdin>", line 1, in <module>StopIteration
生成器没有办法使用return来返回值。
>>> def g3():... yield 'hello'... return 'world'...>>> g=g3()>>> next(g)'hello'>>> next(g)Traceback (most recent call last): File "<stdin>", line 1, in <module>StopIteration: world
>>> help(odd_num)Help on generator object:odd = class generator(object) | Methods defined here: ...... | close(...) | close() -> raise GeneratorExit inside generator. | | send(...) | send(arg) -> send 'arg' into generator, | return next yielded value or raise StopIteration. | | throw(...) | throw(typ[,val[,tb]]) -> raise exception in generator, | return next yielded value or raise StopIteration. ......
手动关闭生成器函数,后面的调用会直接返回StopIteration异常。
>>> def g4():... yield 1... yield 2... yield 3...>>> g=g4()>>> next(g)1>>> g.close()>>> next(g) #关闭后,yield 2和yield 3语句将不再起作用Traceback (most recent call last): File "<stdin>", line 1, in <module>StopIteration
生成器函数最大的特点是可以接受外部传入的一个变量,并根据变量内容计算结果后返回。
这是生成器函数最难理解的地方,也是最重要的地方,实现后面我会讲到的协程就全靠它了。
def gen(): value=0 while True: receive=yield value if receive=='e': break value = 'got: %s' % receiveg=gen()print(g.send(None)) print(g.send('aaa'))print(g.send(3))print(g.send('e'))
执行流程:
当我们g.send('e')时,程序会执行break然后推出循环,最后整个函数执行完毕,所以会得到StopIteration异常。
最后的执行结果如下:
0got: aaagot: 3Traceback (most recent call last):File "h.py", line 14, in <module> print(g.send('e'))StopIteration
用来向生成器函数送入一个异常,可以结束系统定义的异常,或者自定义的异常。
throw()后直接跑出异常并结束程序,或者消耗掉一个yield,或者在没有下一个yield的时候直接进行到程序的结尾。
def gen(): while True: try: yield 'normal value' yield 'normal value 2' print('here') except ValueError: print('we got ValueError here') except TypeError: breakg=gen()print(next(g))print(g.throw(ValueError))print(next(g))print(g.throw(TypeError))
输出结果为:
normal valuewe got ValueError herenormal valuenormal value 2Traceback (most recent call last): File "h.py", line 15, in <module> print(g.throw(TypeError))StopIteration
解释:
下面给出一个综合例子,用来把一个多维列表展开,或者说扁平化多维列表)
def flatten(nested): try: #如果是字符串,那么手动抛出TypeError。 if isinstance(nested, str): raise TypeError for sublist in nested: #yield flatten(sublist) for element in flatten(sublist): #yield element print('got:', element) except TypeError: #print('here') yield nested L=['aaadf',[1,2,3],2,4,[5,[6,[8,[9]],'ddf'],7]]for num in flatten(L): print(num)
如果理解起来有点困难,那么把print语句的注释打开在进行查看就比较明了了。
yield产生的函数就是一个迭代器,所以我们通常会把它放在循环语句中进行输出结果。
有时候我们需要把这个yield产生的迭代器放在另一个生成器函数中,也就是生成器嵌套。
比如下面的例子:
def inner(): for i in range(10): yield idef outer(): g_inner=inner() #这是一个生成器 while True: res = g_inner.send(None) yield resg_outer=outer()while True: try: print(g_outer.send(None)) except StopIteration: break
此时,我们可以采用yield from语句来减少我么你的工作量。
def outer2(): yield from inner()
当然 ,yield from语句的重点是帮我们自动处理内外层之间的异常问题,这里有2篇写的很好的文章,所以我就不再啰嗦了。
http://blog.theerrorlog.com/yield-from-in-python-3.html
http://stackoverflow.com/questions/9708902/in-practice-what-are-the-main-uses-for-the-new-yield-from-syntax-in-python-3
说明:
新闻热点
疑难解答