flume采集数据
kafka做消息队列(缓存)
storm做流式处理
flume版本 apache-flume-1.7.0-bin
kafka版本 kafka_2.11-0.10.1.0(要注意的是有些flume的版本和kafka的版本不兼容,flume采集的数据无法写入到kafka的话题中去,我在这里被坑过)
storm版本 apache-storm-0.9.2-incubating
一、配置(必须先安装zookeeper)
flume配置:
在conf文件夹下新建demoagent.conf文件
(1)监听端口配置
A simple example # example.conf: A single-node Flume configuration# Name the components on this agenta1.sources = r1a1.sinks = k1a1.channels = c1# Describe/configure the sourcea1.sources.r1.type = netcata1.sources.r1.bind = localhosta1.sources.r1.port = 44444# Describe the sinka1.sinks.k1.type = logger# Use a channel which buffers events in memorya1.channels.c1.type = memorya1.channels.c1.capacity = 1000a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channela1.sources.r1.channels = c1a1.sinks.k1.channel = c1(2)命令监听程序
# example.conf: A single-node Flume configuration# Name the components on this agenta1.sources = r1a1.sinks = k1a1.channels = c1# Describe/configure the source netcat a1.sources.r1.type = execa1.sources.r1.command = tail -f /home/zzq/flumedemo/test.loga1.sources.r1.port = 44444a1.sources.r1.channels = c1# Describe the sinka1.sinks.k1.type = logger# Use a channel which buffers events in memorya1.channels.c1.type = memorya1.channels.c1.capacity = 1000a1.channels.c1.transactionCapacity = 100# Bind the source and sink to the channela1.sources.r1.channels = c1a1.sinks.k1.channel = c1(3)flume 和 kafka整合
# example.conf: A single-node Flume configuration# Name the components on this agenta1.sources = r1a1.sinks = k1a1.channels = c1# Describe/configure the source netcat a1.sources.r1.type = execa1.sources.r1.command = tail -f /home/zzq/flumedemo/test.loga1.sources.r1.port = 44444a1.sources.r1.channels = c1# Describe the sink#a1.sinks.k1.type = logger# Use a channel which buffers events in memorya1.channels.c1.type = memorya1.channels.c1.capacity = 1000a1.channels.c1.transactionCapacity = 100a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSinka1.sinks.k1.kafka.topic = testKJ1a1.sinks.k1.kafka.bootstrap.servers = weekend114:9092,weekend115:9092,weekend116:9092a1.sinks.k1.kafka.flumeBatchSize = 20a1.sinks.k1.kafka.PRoducer.acks = 1a1.sinks.k1.kafka.producer.linger.ms = 1a1.sinks.ki.kafka.producer.compression.type = snappy# Bind the source and sink to the channela1.sources.r1.channels = c1a1.sinks.k1.channel = c1我们现在要用的就是第3种flume 和 kafka整合,我们将这个内容放到demoagent.conf文件
[zzq@weekend110 conf]$ cat demoagent.conf # example.conf: A single-node Flume configuration# Name the components on this agenta1.sources = r1a1.sinks = k1a1.channels = c1# Describe/configure the source netcat a1.sources.r1.type = execa1.sources.r1.command = tail -f /home/zzq/flumedemo/test.loga1.sources.r1.port = 44444a1.sources.r1.channels = c1# Describe the sink#a1.sinks.k1.type = logger# Use a channel which buffers events in memorya1.channels.c1.type = memorya1.channels.c1.capacity = 1000a1.channels.c1.transactionCapacity = 100a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSinka1.sinks.k1.kafka.topic = testKJ2a1.sinks.k1.kafka.bootstrap.servers = weekend110:9092a1.sinks.k1.kafka.flumeBatchSize = 200a1.sinks.k1.kafka.producer.acks = 1a1.sinks.k1.kafka.producer.linger.ms = 1a1.sinks.ki.kafka.producer.compression.type = snappy# Bind the source and sink to the channela1.sources.r1.channels = c1a1.sinks.k1.channel = c1配置kafka:
vim config/server.propertiesbroker.id=1zookeeper.connect=weekend114:2181,weekend115:2181,weekend116:2181加入id和zookeeper地址(我的是zookeeper集群)配置storm:
修改配置文件storm.yaml
#所使用的zookeeper集群主机storm.zookeeper.servers: - "weekend114" - "weekend115" - "weekend116"#nimbus所在的主机名nimbus.host: "weekend114"supervisor.slots.ports-6701-6702-6703-6704-6705二、启动(1)、启动strom
在nimbus主机上nohup ./storm nimbus 1>/dev/null 2>&1 &nohup ./storm ui 1>/dev/null 2>&1 &在supervisor主机上nohup ./storm supervisor 1>/dev/null 2>&1 &(2)启动kafka
在每一台节点上启动brokerbin/kafka-server-start.sh config/server.propertieskafka其他实用操作:
5、在kafka集群中创建一个topicbin/kafka-topics.sh --create --zookeeper weekend114:2181 --replication-factor 3 --partitions 1 --topic order6、用一个producer向某一个topic中写入消息bin/kafka-console-producer.sh --broker-list weekend110:9092 --topic order7、用一个comsumer从某一个topic中读取信息bin/kafka-console-consumer.sh --zookeeper weekend114:2181 --from-beginning --topic order8、查看一个topic的分区及副本状态信息bin/kafka-topics.sh --describe --zookeeper weekend114:2181 --topic order查看全部话题./bin/kafka-topics.sh --list --zookeeper weekend114:2181(3)启动flumebin/flume-ng agent --conf conf --conf-file conf/demoagent.conf --name a1 -Dflume.root.logger=INFO,console我们现在向/home/zzq/flumedemo/test.log文件追加内容
[zzq@weekend110 ~]$ echo '您好啊' >> /home/zzq/flumedemo/test.log此时我们查看kafka话题的内容
可以看到kafka已经接收到了,我们现在再用storm读kafka做流式处理storm代码下载地址:http://download.csdn.net/detail/baidu_19473529/9746787
这样整合就完成了
新闻热点
疑难解答