首页 > 学院 > 开发设计 > 正文

CCF201509-4 高速公路(100分)

2019-11-14 10:00:37
字体:
来源:转载
供稿:网友

试题编号:201509-4
试题名称:高速公路
时间限制:1.0s
内存限制:256.0MB
问题描述:问题描述  某国有n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路。  现在,大臣们帮国王拟了一个修高速公路的计划。看了计划后,国王发现,有些城市之间可以通过高速公路直接(不经过其他城市)或间接(经过一个或多个其他城市)到达,而有的却不能。如果城市A可以通过高速公路到达城市B,而且城市B也可以通过高速公路到达城市A,则这两个城市被称为便利城市对。  国王想知道,在大臣们给他的计划中,有多少个便利城市对。输入格式  输入的第一行包含两个整数n, m,分别表示城市和单向高速公路的数量。  接下来m行,每行两个整数a, b,表示城市a有一条单向的高速公路连向城市b。输出格式  输出一行,包含一个整数,表示便利城市对的数量。样例输入5 51 22 33 44 23 5样例输出3样例说明  城市间的连接如图所示。有3个便利城市对,它们分别是(2, 3), (2, 4), (3, 4),请注意(2, 3)和(3, 2)看成同一个便利城市对。评测用例规模与约定  前30%的评测用例满足1 ≤ n ≤ 100, 1 ≤ m ≤ 1000;  前60%的评测用例满足1 ≤ n ≤ 1000, 1 ≤ m ≤ 10000;  所有评测用例满足1 ≤ n ≤ 10000, 1 ≤ m ≤ 100000。

问题链接:CCF201509试题。

问题描述:(参见上文)。

问题分析:这是一个强联通图的问题,用Tarjan算法来解决。另外一个算法是kosaraju算法,也用于解决强联通图问题。

程序说明:本程序采用Tarjan算法。主函数main()中,创建图对象是参数本应该用n,但是提交后出现了运行错误,所有改成n+1。程序通过使用Tarjan算法类(参见以下链接)来实现,做了简单修改,使用变量ans来存储结果,其中增加了中间变量count。

求得强联通子图后,对于每一个强联通子图如果有k个结点,若k>1则强联通对结点的数量为k*(k-1)/2,若k=1则为0。

相关链接:Tarjan算法查找强联通组件

提交后得100分的C++语言程序如下:

/* CCF201509-4 高速公路  */#include <iostream>#include <list>#include <stack>using namespace std;const int NIL = -1;int ans  = 0;// A class that rePResents an directed graphclass Graph{    int V;    // No. of vertices    list<int> *adj;    // A dynamic array of adjacency lists    // A Recursive DFS based function used by SCC()    void SCCUtil(int u, int disc[], int low[],                 stack<int> *st, bool stackMember[]);public:    Graph(int V);   // Constructor    void addEdge(int v, int w);   // function to add an edge to graph    void SCC();    // prints strongly connected components};Graph::Graph(int V){    this->V = V;    adj = new list<int>[V];}void Graph::addEdge(int v, int w){    adj[v].push_back(w);}// A recursive function that finds and prints strongly connected// components using DFS traversal// u --> The vertex to be visited next// disc[] --> Stores discovery times of visited vertices// low[] -- >> earliest visited vertex (the vertex with minimum//             discovery time) that can be reached from subtree//             rooted with current vertex// *st -- >> To store all the connected ancestors (could be part//           of SCC)// stackMember[] --> bit/index array for faster check whether//                  a node is in stackvoid Graph::SCCUtil(int u, int disc[], int low[], stack<int> *st,                    bool stackMember[]){    // A static variable is used for simplicity, we can avoid use    // of static variable by passing a pointer.    static int time = 0;    // Initialize discovery time and low value    disc[u] = low[u] = ++time;    st->push(u);    stackMember[u] = true;    // Go through all vertices adjacent to this    list<int>::iterator i;    for (i = adj[u].begin(); i != adj[u].end(); ++i)    {        int v = *i;  // v is current adjacent of 'u'        // If v is not visited yet, then recur for it        if (disc[v] == -1)        {            SCCUtil(v, disc, low, st, stackMember);            // Check if the subtree rooted with 'v' has a            // connection to one of the ancestors of 'u'            // Case 1 (per above discussion on Disc and Low value)            low[u]  = min(low[u], low[v]);        }        // Update low value of 'u' only of 'v' is still in stack        // (i.e. it's a back edge, not cross edge).        // Case 2 (per above discussion on Disc and Low value)        else if (stackMember[v] == true)            low[u]  = min(low[u], disc[v]);    }    // head node found, pop the stack and print an SCC    int w = 0;  // To store stack extracted vertices    int count = 0;    if (low[u] == disc[u])    {        while (st->top() != u)        {            w = (int) st->top();//            cout << w << " ";            count++;            stackMember[w] = false;            st->pop();        }        w = (int) st->top();//        cout << w << "/n";        count++;        stackMember[w] = false;        st->pop();    }    if(count > 1)        ans += count * (count -1) / 2;}// The function to do DFS traversal. It uses SCCUtil()void Graph::SCC(){    int *disc = new int[V];    int *low = new int[V];    bool *stackMember = new bool[V];    stack<int> *st = new stack<int>();    // Initialize disc and low, and stackMember arrays    for (int i = 0; i < V; i++)    {        disc[i] = NIL;        low[i] = NIL;        stackMember[i] = false;    }    // Call the recursive helper function to find strongly    // connected components in DFS tree with vertex 'i'    for (int i = 0; i < V; i++)        if (disc[i] == NIL)            SCCUtil(i, disc, low, st, stackMember);}int main(){    int n, m, src, dest;    cin >> n >> m;    Graph g(n+1);    for(int i=1; i<=m; i++) {        cin >> src >> dest;        g.addEdge(src, dest);    }    g.SCC();    cout << ans << endl;    return 0;}


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表