利用分治求一次逆序数,然后每次把第一个元素放到末尾,设该交换元素的值为x,设上一次求得的逆序数为y,那么此时的逆序数等于y - x + (n - x - 1),减去x是因为x作为第一个元素,其后共有x个元素小于x,移动x会导致逆序数减少x个,而加上 (n - x - 1) 是因为将x移动到末尾,其前面(n - 1)个元素中会有(n - x - 1)个元素大于x。
此题的复杂度在于求第一次逆序数O(nlgn),后面每次移动元素求更新后的逆序数时间是O(1),因此总的复杂度为(nlgn)。
AC代码:
#include<cstdio>#include<algorithm>#include<cstring>using namespace std;const int maxn = 5000 +5;int a[maxn], c[maxn];int solve(int l, int r){ int mid = (l + r) / 2; if( l == r) return 0; int ans = 0; ans += solve(l, mid) + solve(mid + 1, r); // Merge int b[maxn]; int x = l, y= mid + 1; int k = 0; while(x <= mid && y <= r){ if(a[x] <= a[y]){ b[k++] = a[x++]; } else { ans += mid + 1 - x; b[k++] = a[y++]; } } while(x <= mid) b[k++] = a[x++]; while(y <= r) b[k++] = a[y++]; k = 0; for(int i = l; i <= r; ++i) a[i] = b[k++]; return ans;}int main(){ int n; while(scanf("%d", &n) == 1){ for(int i = 0; i < n; ++i){ scanf("%d", &a[i]); } memcpy(c, a, sizeof(a)); int ans = solve(0, n-1); int x = ans; for(int i = 0; i < n; ++i){ ans = min(ans, x + n - 1 - 2 * c[i]); x = x + n - 1 - 2 * c[i]; } PRintf("%d/n",ans); } return 0;}线段树也能做这个题,每个区间保存的值代表[l, r]中总出现多少元素,每次加入x元素时,查找区间[x + 2, n]即可得到该元素的加入会增加多少逆序数。
贴上线段树代码:
#include<cstdio>#define min(x,y) (x) < (y) ? x : yconst int maxn = 4 * 5000 + 5;int a[5000 + 5];struct node{ int L, R; int cnt;}t[maxn];void Build(int l, int r, int cur){ t[cur].L = l, t[cur].R = r; t[cur].cnt = 0; if(l == r) return; int mid = (l + r) / 2; Build(l, mid, cur << 1); Build(mid + 1, r, (cur << 1) + 1);}void add(int c, int cur){ int l = t[cur].L, r = t[cur].R; t[cur].cnt++; if(l == r) return; int mid = (l + r) / 2; if(c <= mid) add(c, cur << 1); else add(c, (cur << 1) + 1);}int find1(int l, int r, int cur){ //search the Inversion (logn) int l1 = t[cur].L, r1 = t[cur].R; if(l == l1 && r == r1) return t[cur].cnt; int mid = (l1 + r1) / 2; if(r <= mid) return find1(l, r, cur << 1); else if(l >= mid + 1) return find1(l, r, (cur << 1) + 1); else return find1(l, mid, cur << 1) + find1(mid + 1, r, (cur << 1) + 1);}int main(){ int n; while(scanf("%d", &n) == 1){ Build(1, n, 1); int ans = 0; for(int i = 0; i < n; ++i){ scanf("%d", &a[i]); a[i]++; add(a[i], 1); if(a[i] + 1 <= n) ans += find1(a[i] + 1, n, 1); } int x = ans; for(int i = 0; i < n; ++i){ ans = min(ans, x + n + 1 - 2 * a[i]); x = x + n + 1 - 2 * a[i]; } printf("%d/n",ans); } return 0;}如有不当之处欢迎指出!
新闻热点
疑难解答