首页 > 学院 > 开发设计 > 正文

BZOJ 1103: [POI2007]大都市meg 树链剖分, 树状数组+DFS序

2019-11-11 07:54:04
字体:
来源:转载
供稿:网友

Description

  在经济全球化浪潮的影响下,习惯于漫步在清晨的乡间小路的邮递员Blue Mary也开始骑着摩托车传递邮件了。 不过,她经常回忆起以前在乡间漫步的情景。昔日,乡下有依次编号为1..n的n个小村庄,某些村庄之间有一些双 向的土路。从每个村庄都恰好有一条路径到达村庄1(即比特堡)。并且,对于每个村庄,它到比特堡的路径恰好 只经过编号比它的编号小的村庄。另外,对于所有道路而言,它们都不在除村庄以外的其他地点相遇。在这个未开 化的地方,从来没有过高架桥和地下铁道。随着时间的推移,越来越多的土路被改造成了公路。至今,Blue Mary 还清晰地记得最后一条土路被改造为公路的情景。现在,这里已经没有土路了——所有的路都成为了公路,而昔日 的村庄已经变成了一个大都市。 Blue Mary想起了在改造期间她送信的经历。她从比特堡出发,需要去某个村庄, 并且在两次送信经历的间隔期间,有某些土路被改造成了公路.现在Blue Mary需要你的帮助:计算出每次送信她需 要走过的土路数目。(对于公路,她可以骑摩托车;而对于土路,她就只好推车了。) Input

  第一行是一个数n(1 < = n < = 2 50000).以下n-1行,每行两个整数a,b(1 < = a以下一行包含一个整数m (1 < = m < = 2 50000),表示Blue Mary曾经在改造期间送过m次信。以下n+m-1行,每行有两种格式的若干信息 ,表示按时间先后发生过的n+m-1次事件:若这行为 A a b(a若这行为 W a, 则表示Blue Mary曾经从比特堡送信到 村庄a。 Output

  有m行,每行包含一个整数,表示对应的某次送信时经过的土路数目。 Sample Input 5

1 2

1 3

1 4

4 5

4

W 5

A 1 4

W 5

A 4 5

W 5

W 2

A 1 2

A 1 3

Sample Output 2

1

0

1

解题方法1: 直接无脑上树链剖分。

#include <bits/stdc++.h>using namespace std;const int maxn = 250005;const int maxm = 500005;int head[maxn], cnt, sz, n, q;int dep[maxn], siz[maxn], fa[maxn], pos[maxn], bl[maxn];struct edge{int to, nxt; } E[maxm];struct seg{int l, r, sum; } T[maxn*10];void init(){ memset(head, -1, sizeof(head)); cnt = sz = 0;}void addedge(int u, int v){ E[cnt].to = v, E[cnt].nxt = head[u], head[u] = cnt++;}void dfs1(int x){ siz[x] = 1; for(int i = head[x]; ~i; i = E[i].nxt){ if(E[i].to == fa[x]) continue; dep[E[i].to] = dep[x] + 1; fa[E[i].to] = x; dfs1(E[i].to); siz[x] += siz[E[i].to]; }}void dfs2(int x, int chain){ int k = 0; sz++; pos[x] = sz; //分配x节点在线段树中的编号 bl[x] = chain; //记录链的顶端 for(int i = head[x]; ~i; i = E[i].nxt){ if(dep[E[i].to] > dep[x] && siz[E[i].to] > siz[k]){ k = E[i].to; //选择子树最大的儿子继承重链 } } if(k == 0) return; dfs2(k, chain); for(int i = head[x]; ~i; i = E[i].nxt){ if(dep[E[i].to] > dep[x] && k != E[i].to){ dfs2(E[i].to, E[i].to); //其余儿子新开重链 } }}void build(int l, int r, int o){ T[o].l = l, T[o].r =r; if(l == r){ if(l == 1) T[o].sum = 0; else T[o].sum = 1; return ; } int mid = (l + r) / 2; build(l, mid, o*2); build(mid + 1, r, o*2+1); T[o].sum = T[o*2].sum + T[o*2+1].sum;}void update(int pos, int val, int o){ if(T[o].l == T[o].r){ T[o].sum = val; return; } int mid = (T[o].l + T[o].r) / 2; if(pos <= mid) update(pos, val, o*2); else update(pos, val, o*2+1); T[o].sum = T[o*2].sum + T[o*2+1].sum;}int query1(int L, int R, int o){ if(L <= T[o].l && T[o].r <= R) return T[o].sum; int mid = (T[o].l + T[o].r) / 2; int ans = 0; if(L <= mid) ans += query1(L, R, o * 2); if(mid < R) ans += query1(L, R, o * 2 + 1); return ans;}int query2(int x, int y){ int ans = 0; while(bl[x] != bl[y]){ if(dep[bl[x]] < dep[bl[y]]) swap(x, y); ans += query1(pos[bl[x]], pos[x], 1); x = fa[bl[x]]; } if(pos[x] > pos[y]) swap(x, y); ans += query1(pos[x], pos[y], 1); return ans;}int main(){ init(); scanf("%d", &n); for(int i = 1; i < n; i++){ int u, v; scanf("%d%d", &u, &v); if(u > v) swap(u, v); addedge(u, v); } dfs1(1); dfs2(1, 1); build(1, sz, 1); scanf("%d", &q); for(int i = 1; i <= n + q - 1; i++){ char cmd[5]; int x, y; scanf("%s", cmd); if(cmd[0] == 'W'){ scanf("%d", &x); PRintf("%d/n", query2(1, x)); } else{ scanf("%d%d", &x, &y); if(x > y) swap(x, y); update(pos[y], 0, 1); } } return 0;}

解题方法2: 看了hzwer的博客,发现了一种新方法,用树状数组维护DFS序。可以看hzwer神牛的解题报告,OTZ 然后这个DFS序貌似需要人工栈,丢一份蒟蒻代码

#include <bits/stdc++.h>using namespace std;const int maxn = 250005;const int maxm = 500005;int n, m, head[maxn], st[maxm], en[maxm], tree[maxm], dfn, edgecnt;struct edge{int v, nxt; } E[maxm];void init(){ dfn = edgecnt = 0; memset(head, -1, sizeof(head));}void addedge(int u, int v){ E[edgecnt].v = v, E[edgecnt].nxt = head[u], head[u] = edgecnt++;}int lowbit(int x) {return x & (-x);}void add(int x, int v){for(; x <= m; x += x & -x) tree[x] += v;}int sum(int x){int res = 0; for(; x; x -= x & -x) res += tree[x]; return res;}void dfs(int u, int fa){ st[u] = ++dfn; add(dfn, 1); for(int i = head[u]; ~i; i = E[i].nxt){ int v = E[i].v; if(v == u) continue; dfs(v, u); } en[u] = ++dfn; add(dfn, -1);}int main(){ init(); scanf("%d", &n); m = n * 2; for(int i = 1; i < n; i++){ int u, v; scanf("%d%d", &u, &v); if(u > v) swap(u, v); addedge(u, v); } dfs(1, -1); char cmd[5]; int q; scanf("%d", &q); q += n - 1; while(q--){ scanf("%s", cmd); if(cmd[0] == 'W'){ int u; scanf("%d", &u); printf("%d/n", sum(st[u]) - 1); } else{ int u, v; scanf("%d%d", &u, &v); if(u > v) swap(u, v); add(st[v], -1); add(en[v], 1); } } return 0;}
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表