第一次接触dp问题觉得超级棘手,短短的几行代码竟然把答案描绘的淋漓尽致,却不让人懂,在我思考许久未果后开始转向思考从短短的工业革命兴起的各种思想,代代数学家和科学家总结的这些精华究竟存在哪些共性和异性,如何发现问题,解决问题,从最本质最易懂的方面下手,从而发现许多东西首先要翻译的好,精炼的好。从基本的规律到总结出常人难懂的定理需要走多远呢,再难懂的问题时间也可以解决,再易懂的问题也需要时间来解决,就是欠个火候或者称之为时间之上的感觉,仅此而已。
接下来就是一串繁琐的定义(神马是动态规划,额很无语的说,自己看吧)
动态规划理念:
1.最优化原理 1951年美国数学家R.Bellman等人,根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。一些静态模型,只要人为地引进“时间”因素,分成时段,就可以转化成多阶段的动态模型,用动态规划方法去处理。与此同时,他提出了解决这类问题的“最优化原理”(PRinciple of optimality): “一个过程的最优决策具有这样的性质:即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略”。简言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。 这个“最优化原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某一优化问题,需要依次作出n个决策D1,D2,…,Dn,如若这个决策序列是最优的,对于任何一个整数k,1 < k < n,不论前面k个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即以后的决策Dk+1,Dk+2,…,Dn也是最优的。 最优化原理是动态规划的基础。任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。能采用动态规划求解的问题都需要满足一定的条件: (1) 问题中的状态必须满足最优化原理; (2) 问题中的状态必须满足无后效性。 所谓的无后效性是指:“下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结”。
2.问题求解模式 动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。如图所示。动态规划的设计都有着一定的模式,一般要经历以下几个步骤。 初始状态→│决策1│→│决策2│→…→│决策n│→结束状态 图1 动态规划决策过程示意图 (1)划分阶段:按照问题的时间或空间特征,把问题分为若干个阶段。在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。 (2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。当然,状态的选择要满足无后效性。 (3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两段各状态之间的关系来确定决策。 (4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
3.实现 动态规划的主要难点在于理论上的设计,也就是上面4个步骤的确定,一旦设计完成,实现部分就会非常简单。使用动态规划求解问题,最重要的就是确定动态规划三要素:问题的阶段,每个阶段的状态以及从前一个阶段转化到后一个阶段之间的递推关系。递推关系必须是从次小的问题开始到较大的问题之间的转化,从这个角度来说,动态规划往往可以用递归程序来实现,不过因为递推可以充分利用前面保存的子问题的解来减少重复计算,所以对于大规模问题来说,有递归不可比拟的优势,这也是动态规划算法的核心之处。确定了动态规划的这三要素,整个求解过程就可以用一个最优决策表来描述,最优决策表是一个二维表,其中行表示决策的阶段,列表示问题状态,表格需要填写的数据一般对应此问题的在某个阶段某个状态下的最优值(如最短路径,最长公共子序列,最大价值等),填表的过程就是根据递推关系,从1行1列开始,以行或者列优先的顺序,依次填写表格,最后根据整个表格的数据通过简单的取舍或者运算求得问题的最优解。下面分别以求解最大化投资回报问题和最长公共子序列问题为例阐述用动态规划算法求解问题的一般思路。
个人觉得花时间读这些东西不如给你一串代码自己体会(自己写的),其实有时候定义不一定是个好东西,它可以给人以方向也能把人给局限了。(做太多题不如自己自己分析问题)
DP()
{
Fomula(动(状态)+思想+随你喽);
}
来吧,宏观看一下你所处的位置,放低姿态别以为自己懂得很多。
1,简单dp;
1.递推2.背包(0-1背包,完全背包,分组背包,多重背包)3.LIS 4.LCS
2,区间dp;
3,树形dp;
4,数位dp;
5,概率(期望)dp;
6,状态压缩dp;
7,数据结构优化的dp;
写完之后发现我现在懂得真是冰山一角,so啥也别说了,谦虚点。
新闻热点
疑难解答