Given any permutation of the numbers {0, 1, 2,..., N-1}, it is easy to sort them in increasing order. But what if Swap(0, *) is the ONLY Operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}Swap(0, 3) => {4, 1, 2, 3, 0}Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (<=105) followed by a permutation sequence of {0, 1, ..., N-1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply PRint in a line the minimum number of swaps need to sort the given permutation.
Sample Input:10 3 5 7 2 6 4 9 0 8 1Sample Output:9索引数字反向存储,每次枚举第一个位置是否为0,为0在枚举未归位后是否有数字,没有则说明已排好#include<cstdio>#include<algorithm>using namespace std;const int maxn = 1e5 + 10;int main(){ int a[maxn]; int n, temp, k = 1, ans = 0;//k保存未归位数的最小值 ans保存交换次数 scanf("%d", &n); int count = n - 1; for(int i = 0; i < n; ++i) { scanf("%d", &temp); a[temp] = i; } while(1) { while(a[0] != 0) { swap(a[0], a[a[0]]);//交换0与a[0] ans++; count--; } while(k < n) { if(a[k] != k) { swap(a[0], a[k]);//交换0与k的位置 ans++; break; } ++k; } if(k == n) //k到达最后一个数的下一位置,说明都已归位 break; } printf("%d/n", ans); return 0;}/* //殊途同归1using namespace std;const int maxn = 1e5 + 10;int a[maxn], ans, n, k;int main(){ ans = 0, k = 1; int temp;//temp接收索引, k 代表未归位的最小数 scanf("%d", &n); int count = n - 1; for(int i = 0; i < n; ++i) { scanf("%d", &temp); a[temp] = i; if(temp != 0 && temp == i) count--; } while(count > 0) { while(a[0] != 0) { temp = a[0]; swap(a[0], a[temp]); ans++; } for(int i = k; i < n; ++i) { if(a[i] != i) { swap(a[0], a[i]); k = i; ans++; break; } if(i == n-1) { printf("%d/n", ans); return 0; } } } return 0;}*//* //殊途同归2int main(){ ans = 0, k = 1;// k 代表未归位的最小数 scanf("%d", &n); int temp, count = n - 1;//temp接收索引 for(int i = 0; i < n; ++i) { scanf("%d", &temp); a[temp] = i; if(temp != 0 && temp == i) { count--; } } while(count > 0) { if(a[0] == 0) { while(k < n) { if(a[k] != k) { swap(a[0], a[k]); ans++; break; } ++k; } } while(a[0] != 0) { swap(a[0], a[a[0]]); ans++; count--; } } printf("%d/n", ans); return 0;}*/
新闻热点
疑难解答