大体题意:
给你a数组和b 数组和p,问有多少个子序列,aq,a(q+p),a(q+2p).,., 完全等于b 数组。
思路:
两个数组最大是1e6.
又是字符串匹配问题,首先想到kmp算法。
这个题目里面b 数组是固定的,直接获得b 的next数组。
然后我们划分成p 个a数组,这p 个字符串分别与b 数组进行匹配即可。
吐槽:
当然还在想万一模板串比查找串的长度小,或者大怎么办,我还写了两个kmp 但是是错的。
想一想就知道 如果a数组比b 数组短的话,这个解肯定是0, 那么直接写一个kmp就好了。
#include <cstdio>#include <cstring>#include <algorithm>#include <vector>#define Siz(x) (int)x.size()using namespace std;const int maxn = 1000000 + 7;int T, n, m, p, ks;int a[maxn], b[maxn], Next[maxn];vector<int>c[maxn];void get_Next(){ memset(Next,0,sizeof Next); int j = 0; for (int i = 1; i < m; ++i){ while(j > 0 && b[i] != b[j]) j = Next[j]; if (b[i] == b[j]) ++j; Next[i+1] = j; }}int Kmp(int id,int sz){ int j = 0; int ans = 0; for (int i = 0; i < sz; ++i){ while(j > 0 && b[j] != c[id][i]) j = Next[j]; if (b[j] == c[id][i])++j; if (j == m) ++ans; } return ans;}int main(){ scanf("%d",&T); while(T--){ scanf("%d %d %d",&n, &m, &p); for (int i = 0; i < p; ++i)c[i].clear(); for (int i = 0; i < n; ++i) { scanf("%d",a+i); c[i%p].push_back(a[i]); } for (int i = 0; i < m; ++i) scanf("%d",b+i); b[m] = 0; get_Next(); int ans = 0; for (int i = 0; i < p; ++i){ if (Siz(c[i]) > 0) ans += Kmp(i,Siz(c[i])); } PRintf("Case #%d: %d/n",++ks,ans); } return 0;}/**1 3 111 1 13 1 11 1 11**/Sequence I
Time Limit: 3000/1500 MS (java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1579 Accepted Submission(s): 589Problem DescriptionMr. Frog has two sequencesa1,a2,⋯,an andb1,b2,⋯,bm and a number p. He wants to know the number of positions q such that sequenceb1,b2,⋯,bm is exactly the sequenceaq,aq+p,aq+2p,⋯,aq+(m−1)p whereq+(m−1)p≤n andq≥1 . InputThe first line contains only one integerT≤100 , which indicates the number of test cases.Each test case contains three lines.The first line contains three space-separated integers1≤n≤106,1≤m≤106 and1≤p≤106 .The second line contains n integersa1,a2,⋯,an(1≤ai≤109) .the third line contains m integersb1,b2,⋯,bm(1≤bi≤109) . OutputFor each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s. Sample Input26 3 11 2 3 1 2 31 2 36 3 21 3 2 2 3 11 2 3 Sample OutputCase #1: 2Case #2: 1 Source2016中国大学生程序设计竞赛(长春)-重现赛 Recommendwange2014 | We have carefully selected several similar problems for you: 6014 6013 6012 6011 6010
新闻热点
疑难解答