#include <iostream>#include <stdio.h>#include <vector>#include <algorithm>using namespace std;/*问题:Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.The same repeated number may be chosen from C unlimited number of times.Note:All numbers (including target) will be positive integers.The solution set must not contain duplicate combinations.For example, given candidate set [2, 3, 6, 7] and target 7, 分析:这是程序员面试金典的一道题目。求组成数的所有组合。应该是用递归做。之前是n分的硬币用25,10,5,1的硬币表示分别枚举i * denom <= total时,i从0到k的情况,然后递归做2 3 6 7此题应该也是用这种方式输入:4(数组元素个数) 7(目标值)2 3 6 74 62 3 6 72 72 6输出:7,2 2 36,3 3,2 2 2no result关键:1 前半部分求解结果,前半部分 与 后半部分结果 进行笛卡尔积 即为最终结果int curCandidate = candidates.at(curCandidateIndex);vector<vector<int>> results;//后半部分递归求解结果vector<int> result;//前半部分求解结果,前半部分 与 后半部分结果 进行笛卡尔积 即为最终结果for(int i = 0 ; i * curCandidate <= target ; i++){ result.clear();//清空上一次结果 for(int j = 0 ; j < i ; j++) { result.push_back(curCandidate); } results = combineSum(candidates , target - i * curCandidate , curCandidateIndex + 1 );//得到多个结果需要和当前结果进行笛卡尔积拼接 int size = results.size(); //进行笛卡尔积拼接 for(int k = 0 ; k < size ; k++) { results.at(k).insert(results.at(k).end() , result.begin() , result.end());//插入到后面,前面是最小部分 totalResults.push_back(results.at(k)); } //如果当前直接等于结果集i * curCandidate = target,直接压入结果中 if(i * curCandidate == target) { totalResults.push_back(result); }}return totalResults;*/bool compare(int a, int b){ return a > b;}class Solution {public: vector<vector<int>> combineSum(vector<int>& candidates, int target , int curCandidateIndex) { vector< vector<int> > totalResults; if(candidates.empty() || target <= 0 || curCandidateIndex < 0 || curCandidateIndex >= candidates.size()) { return totalResults; } int curCandidate = candidates.at(curCandidateIndex); vector<vector<int>> results;//后半部分递归求解结果 vector<int> result;//前半部分求解结果,前半部分 与 后半部分结果 进行笛卡尔积 即为最终结果 for(int i = 0 ; i * curCandidate <= target ; i++) { result.clear();//清空上一次结果 for(int j = 0 ; j < i ; j++) { result.push_back(curCandidate); } results = combineSum(candidates , target - i * curCandidate , curCandidateIndex + 1 );//得到多个结果需要和当前结果进行笛卡尔积拼接 int size = results.size(); //进行笛卡尔积拼接 for(int k = 0 ; k < size ; k++) { results.at(k).insert(results.at(k).end() , result.begin() , result.end());//插入到后面,前面是最小部分 totalResults.push_back(results.at(k)); } //如果当前直接等于结果集i * curCandidate = target,直接压入结果中 if(i * curCandidate == target) { totalResults.push_back(result); } } return totalResults; } vector<vector<int>> combinationSum(vector<int>& candidates, int target) { //必须确保候选值从大到小排序 sort(candidates.begin() , candidates.end() , compare ); int curCandidateIndex = 0; vector<vector<int>> results = combineSum(candidates, target , curCandidateIndex); return results; }};void PRint(vector<vector<int>>& results){ if(results.empty()) { cout << "no result" << endl; return; } int size = results.size(); for(int i = 0 ; i < size ; i++) { int len = results.at(i).size(); for(int j = 0 ; j < len ; j++) { cout << results.at(i).at(j) << " "; } cout << ","; } cout << endl;}void process(){ int num; vector<int> nums; int target; int value; Solution solution; vector< vector<int> > results; while(cin >> num >> target) { nums.clear(); for(int i = 0 ; i < num ; i++) { cin >> value; nums.push_back(value); } results = solution.combinationSum(nums , target); print(results); }}int main(int argc , char* argv[]){ process(); getchar(); return 0;}
新闻热点
疑难解答