Given a PRime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)Input
Read several lines of input, each containing P,B,N separated by a space,
Output
for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B(P-1) == 1 (mod P)for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .Sample Input
5 2 15 2 25 2 35 2 45 3 15 3 25 3 35 3 45 4 15 4 25 4 35 4 412345701 2 11111111111111121 65537 1111111111Sample Output
013203120no solutionno solution19584351462803587HINT
Source
[Submit][Status][Discuss] 题解:BSGS
#include<iostream>#include<cstdio>#include<cstring>#include<cmath>#include<algorithm>#include<map>#define LL long long using namespace std;LL a,b,c;map<LL,int> mp;LL quickpow(int x){ LL base=a%c; LL ans=1; while (x) { if (x&1) ans=ans*base%c; x>>=1; base=base*base%c; } return ans;}int main(){ freopen("a.in","r",stdin); while (scanf("%I64d%I64d%I64d",&c,&a,&b)!=EOF) { mp.clear(); if (a%c==0) { printf("no solution/n"); continue; } int p=false; int m=ceil(sqrt(c)); LL ans; for (int i=0;i<=m;i++) { if (i==0) { ans=b%c; mp[ans]=i; continue; } ans=(ans*a)%c; mp[ans]=i; } LL t=quickpow(m); ans=1; bool pd=false; for (int i=1;i<=m;i++) { ans=ans*t%c; if (mp[ans]) { int t=i*m-mp[ans]; printf("%d/n",(t%c+c)%c); pd=true; break; } } if (!pd) printf("no solution/n"); }}
新闻热点
疑难解答