tf.nn,tf.layers,tf.contrib的区别(V1.0)
三个模块里都可以实现卷积层的操作,一直不太明白他们之间的区别。tf.nn 提供神经网络相关操作的支持,包括各种卷积操作、激活函数、pooling、归一化、losses、分类操作、 embedding、RNN(dynamic_rnn bidirectional_dynamic_rnn raw_rnn)、Evaluation
tf.layers 这个库提供一系列的高级神经网络层、都是卷积相关的。
tf.contrib.layers 提供 构建计算图中网络层、正则化、摘要操作。是构建计算图的高级操作,但是contrib 模块包含不稳定和实验性的代码,有可能以后API会改变。内容更丰富,支持的操作更多。
tf.reduce_mean(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
Computes the mean of elements across dimensions of a tensor.
对张量的某个维度上的元素进行平均计算
Reduces input_tensor
along the dimensions given in axis
. Unless keep_dims
is true, the rank of the tensor is reduced by 1 for each entry in axis
. If keep_dims
is true, the reduced dimensions are retained with length 1.
按照给定的轴axis在某个维度上缩减张量。
If axis
has no entries, all dimensions are reduced, and a tensor with a single element is returned.
如果axis没有输入,所有维度都进行缩减,返回只有一个元素的张量。
For example:
# 'x' is [[1., 1.]# [2., 2.]]tf.reduce_mean(x) ==> 1.5tf.reduce_mean(x, 0) ==> [1.5, 1.5]tf.reduce_mean(x, 1) ==> [1., 2.]Args:
input_tensor
: The tensor to reduce. Should have numeric type. 输入张量,数值型axis
: The dimensions to reduce. If None
(the default), reduces all dimensions.需要缩减的维度,如果空,缩减所有维度keep_dims
: If true, retains reduced dimensions with length 1.如果真,保留缩减的维度为1name
: A name for the Operation (optional).reduction_indices
: The old (dePRecated) name for axis.老的方式,确定维度。——————————————————————————————————————————————————————————————————————tf.argmax(input, axis=None, name=None, dimension=None)
tf.argmax(input, axis=None, name=None, dimension=None)
See the guide: Math > Sequence Comparison and Indexing
Returns the index with the largest value across axes of a tensor. 返回的是张量按轴找最大值的index
Args:
input
: A Tensor
. Must be one of the following types: float32
, float64
, int64
, int32
, uint8
, uint16
, int16
, int8
, complex64
, complex128
, qint8
, quint8
, qint32
, half
.axis
: A Tensor
. Must be one of the following types: int32
, int64
. int32, 0 <= axis < rank(input). Describes which axis of the input Tensor to reduce across. For vectors, use axis = 0. 0--找每一列 1--找每一行name
: A name for the operation (optional).Returns:
A Tensor
of type int64
. 返回的是最大值的位置,运行sess才能显示值。
Defined in tensorflow/python/ops/math_ops.py
.
————————————————————————————————————————————————————————————————————————tf.reshape(tensor, shape, name=None)
Reshapes a tensor.
Given tensor
, this operation returns a tensor that has the same values as tensor
with shape shape
.
If one component of shape
is the special value -1, the size of that dimension is computed so that the total size remains constant. In particular, a shape
of [-1]
flattens into 1-D. At most one component of shape
can be -1.
If shape
is 1-D or higher, then the operation returns a tensor with shape shape
filled with the values of tensor
. In this case, the number of elements implied by shape
must be the same as the number of elements in tensor
.
如果shape中有一个位置喂-1,是为了其余位置的大小保持不变,-1的位置自适应size。
For example:
# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]# tensor 't' has shape [9]reshape(t, [3, 3]) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9]]# tensor 't' is [[[1, 1], [2, 2]],# [[3, 3], [4, 4]]]# tensor 't' has shape [2, 2, 2]reshape(t, [2, 4]) ==> [[1, 1, 2, 2], [3, 3, 4, 4]]# tensor 't' is [[[1, 1, 1],# [2, 2, 2]],# [[3, 3, 3],# [4, 4, 4]],# [[5, 5, 5],# [6, 6, 6]]]# tensor 't' has shape [3, 2, 3]# pass '[-1]' to flatten 't'reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]# -1 can also be used to infer the shape# -1 is inferred to be 9:reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]]# -1 is inferred to be 2:reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]]# -1 is inferred to be 3:reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, 6, 6]]]# tensor 't' is [7]# shape `[]` reshapes to a scalarreshape(t, []) ==> 7Args:
tensor
: A Tensor
.shape
: A Tensor
of type int32
. Defines the shape of the output tensor.name
: A name for the operation (optional).Returns:
A Tensor
. Has the same type as tensor
新闻热点
疑难解答