The "Hamilton cycle PRoblem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2< N <= 200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format "Vertex1 Vertex2", where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line "YES" if the path does form a Hamiltonian cycle, or "NO" if not.
Sample Input:6 106 23 41 52 53 14 11 66 31 24 567 5 1 4 3 6 2 56 5 1 4 3 6 29 6 2 1 6 3 4 5 2 64 1 2 5 17 6 1 3 4 5 2 67 6 1 2 5 4 3 1Sample Output:YESNONONOYESNO#include<cstdio>#include<set>#include<algorithm>using namespace std;const int maxn = 210;const int INF = 1000000000;int a[maxn];int G[maxn][maxn];int main(){ fill(G[0], G[0] + maxn*maxn, INF); int N, M; scanf("%d %d", &N, &M); int v1, v2; for (int i = 0; i < M; i++) { scanf("%d %d", &v1, &v2); G[v1][v2] = 1; G[v2][v1] = 1; } int K; scanf("%d", &K); int n; set<int> s; bool flag = false; for (int i = 0; i < K; i++) { scanf("%d", &n); for (int j = 0; j < n; j++) { scanf("%d", &a[j]); s.insert(a[j]); } if (n != N + 1 || s.size() != N) { printf("NO/n"); } else { int j = 0; if (n == N + 1 && s.size() == N) { for (j = 0; j < n - 1; j++) { if (G[a[j]][a[j + 1]] == 1 && a[0] == a[n - 1]) continue; else { printf("NO/n"); break; } } if (j == n - 1) { printf("YES/n"); } } } s.clear(); } return 0;}
新闻热点
疑难解答