最长回文子串的求解,主要有这四种方法:
1.暴力求解
罗列所以可能的子串,一一判断是否是回文。 O(n^3)
2.动态规划
回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文字符串,那么P[i+1,j-1]也是回文字符串。这样最长回文子串就能分解成一系列子问题了。这样需要额外的空间O(N^2),算法复杂度也是O(N^2)。
(这是抄的)
3.中心扩展
以每一个字符做中心向两边扩展,分奇数个字符和偶数个字符两种情况
4.Manacher法
这里用第三种 比较好实现
class Solution {public: string longestPalindrome(string s) { int size = s.size(); int max = 0, start = 0; //odd for (int i = 0; i < size; ++i) { int count = 0, len = 0; while(i - count >= 0 && i + count < size){ if(s[i - count] == s[i + count]){ len = 2 * count + 1; count++; } else break; } if(len > max){ max = len; start = i - count + 1; } } //cout << max << " " << start << endl; //even //cout << "~~" << endl; for (int i = 0; i < size; ++i) { int left = i, right = i + 1, count = 0, len = 0; while(left - count >= 0 && right + count < size){ if(s[left - count] == s[right + count]){ len = 2 * count + 2; count++; } else break; } if(len > max){ max = len; start = i - count + 1; } } //cout << max << " " << start << endl; string ans = s.substr(start, max); return ans; }};
新闻热点
疑难解答