混合高斯模型(Mixtures of Gaussians):
GMM(Gaussian Mixture Model) 统计学习的模型有两种,一种是概率模型,一种是非概率模型。 所谓概率模型,是指训练模型的形式是P(Y|X)。输入是X,输出是Y,训练后模型得到的输出不是一个具体的值,而是一系列的概率值(对应于分类问题来说,就是输入X对应于各个不同Y(类)的概率),然后我们选取概率最大的那个类作为判决对象(软分类--soft assignment)。所谓非概率模型,是指训练模型是一个决策函数Y=f(X),输入数据X是多少就可以投影得到唯一的Y,即判决结果(硬分类--hard assignment)。 所谓混合高斯模型(GMM)就是指对样本的概率密度分布进行估计,而估计采用的模型(训练模型)是几个高斯模型的加权和(具体是几个要在模型训练前建立好)。每个高斯模型就代表了一个类(一个Cluster)。对样本中的数据分别在几个高斯模型上投影,就会分别得到在各个类上的概率。然后我们可以选取概率最大的类所为判决结果。 从中心极限定理的角度上看,把混合模型假设为高斯的是比较合理的,当然,也可以根据实际数据定义成任何分布的Mixture Model,不过定义为高斯的在计算上有一些方便之处,另外,理论上可以通过增加Model的个数,用GMM近似任何概率分布。
最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(latent variable)的概率参数模型的最大似然估计或极大后验概率估计。
http://blog.csdn.net/u012409883/article/details/17090911
http://www.52ml.net/7890.html
http://blog.csdn.net/xuanyuansen/article/details/41309033
http://blog.csdn.net/hevc_cjl/article/details/9733945
http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html
新闻热点
疑难解答