ICA是一种用来从多变量(多维)统计数据里找到隐含的因素或成分的方法,被认为是主成分分析(PRincipal Component Analysis, PCA)和因子分析(Factor Analysis)的一种扩展。对于盲源分离问题,ICA是指在只知道混合信号,而不知道源信号、噪声以及混合机制的情况下,分离或近似地分离出源信号的一种分析过程。
ICA是将原始数据降维并提取出相互独立的属性。我们知道两个随机变量独立则它们一定不相关,但2个随机变量不相关则不能保证它们不独立,因为独立是表示没有任何关系,而不相关只能表明是没有线性关系。且PCA目的是找到这样一组分量表示,使得重构误差最小,即最能代表原事物的特征。ICA的目的是找到这样一组分量表示,使得每个分量最大化独立,能够发现一些隐藏因素。由此可见,ICA的条件比PCA更强些。
http://blog.csdn.net/walilk/article/details/50468140
http://blog.csdn.net/dark_scope/article/details/8227329
新闻热点
疑难解答