二叉树(binary tree)是结点的有限集合,这个集合或者空,或者由一个根及两个互不相交的称为这个根的左子树或右子树构成. 从定义可以看出,二叉树包括:1.空树 2.只有一个根节点 3.只有左子树 4.只有右子树 5.左右子树都存在 有且仅有这5中表现形式
特殊的二叉树:
(1)斜树:顾名思义,斜树一定是要斜的;所有的结点都只有左子树的二叉树叫左斜树,所有的结点都只有右子树的二叉树叫右斜树;其实,线性表就可以理解为树的一种特殊的表现形式;
(2)满二叉树:在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树;如图:
(3)完全二叉树:对一棵具有n个结点的二叉树按层序编号,如果编号为i的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,那么这棵二叉树称为完全二叉树;或者这样理解:在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是右边缺少连续若干个结点,则称此树为完全二叉树;
所以我们可以这样判断完全二叉树:那就是看着树的示意图,心中默默给每个结点按照满二叉树的结构逐层顺序编号,如果编号出现空档,就说明不是完全二叉树,否则就是;
二叉树的实现:同样,二叉树也可以通过顺序存储和链式存储来实现;
二叉树的顺序存储就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标要能体现结点之间的逻辑关系,比如父结点与子结点的逻辑关系,子结点 与子结点之间的关系;但顺序存储的实用性不强;
所以一般采用链式存储;
二叉树的遍历:是指从根结点出发,按照某种次序,依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次;
二叉树的遍历方式有好多种,如果我们限制了从左到右的习惯方式,那么主要就有以下几种:
(1)前序遍历:先访问子结点,然后前序遍历左子树,再前序遍历右子树;如下图,遍历顺序是:ABDGHCEIF
(2)中序遍历:从根结点开始(但并不是先访问根结点),中序遍历根结点的左子树,然后方式根结点,最后中序遍历右树,如图,遍历的顺序是:GDHBAEICF
(3)后序遍历:从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点;如图,遍历的顺序是:GHDBIEFCA
(4)层序遍历:从树的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点进行逐个访问;如图,遍历顺序为:ABCDEFGHI
package test.tree;public class TreeNode { public int key; public String data; public TreeNode leftChild; public TreeNode rightChild; public boolean isVisted=false; public TreeNode() { } public TreeNode(int key, String data) { this.key = key; this.data = data; } public TreeNode(int key, String data, TreeNode leftChild, TreeNode rightChild) { this.key = key; this.data = data; this.leftChild = leftChild; this.rightChild = rightChild; }}二叉树处理遍历package test.tree;import java.util.Stack;public class BinaryTree { PRivate TreeNode root=null; public BinaryTree(){ root=new TreeNode(1,"rootNode(A)"); } /** * 创建一棵二叉树 * <pre> * A * B C * D E F * </pre> * @param root */ public void createBinTree(TreeNode root){ TreeNode newNodeB = new TreeNode(2,"B"); TreeNode newNodeC = new TreeNode(3,"C"); TreeNode newNodeD = new TreeNode(4,"D"); TreeNode newNodeE = new TreeNode(5,"E"); TreeNode newNodeF = new TreeNode(6,"F"); root.leftChild=newNodeB; root.rightChild=newNodeC; root.leftChild.leftChild=newNodeD; root.leftChild.rightChild=newNodeE; root.rightChild.rightChild=newNodeF; } public boolean isEmpty(){ return root==null; } //树的高度 public int height(){ return height(root); } //节点个数 public int size(){ return size(root); } private int height(TreeNode subTree){ if(subTree==null) return 0;//递归结束:空树高度为0 else{ int i=height(subTree.leftChild); int j=height(subTree.rightChild); return (i<j)?(j+1):(i+1); } } private int size(TreeNode subTree){ if(subTree==null){ return 0; }else{ return 1+size(subTree.leftChild) +size(subTree.rightChild); } } //返回双亲结点 public TreeNode parent(TreeNode element){ return (root==null|| root==element)?null:parent(root, element); } public TreeNode parent(TreeNode subTree,TreeNode element){ if(subTree==null) return null; if(subTree.leftChild==element||subTree.rightChild==element) //返回父结点地址 return subTree; TreeNode p; //现在左子树中找,如果左子树中没有找到,才到右子树去找 if((p=parent(subTree.leftChild, element))!=null) //递归在左子树中搜索 return p; else //递归在右子树中搜索 return parent(subTree.rightChild, element); } public TreeNode getLeftChildNode(TreeNode element){ return (element!=null)?element.leftChild:null; } public TreeNode getRightChildNode(TreeNode element){ return (element!=null)?element.rightChild:null; } public TreeNode getRoot(){ return root; } //在释放某个结点时,该结点的左右子树都已经释放, //所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放 public void destroy(TreeNode subTree){ //删除根为subTree的子树 if(subTree!=null){ //删除左子树 destroy(subTree.leftChild); //删除右子树 destroy(subTree.rightChild); //删除根结点 subTree=null; } } public void traverse(TreeNode subTree){ System.out.println("key:"+subTree.key+"--name:"+subTree.data);; traverse(subTree.leftChild); traverse(subTree.rightChild); } //前序遍历 public void preOrder(TreeNode subTree){ if(subTree!=null){ visted(subTree); preOrder(subTree.leftChild); preOrder(subTree.rightChild); } } //中序遍历 public void inOrder(TreeNode subTree){ if(subTree!=null){ inOrder(subTree.leftChild); visted(subTree); inOrder(subTree.rightChild); } } //后续遍历 public void postOrder(TreeNode subTree) { if (subTree != null) { postOrder(subTree.leftChild); postOrder(subTree.rightChild); visted(subTree); } } //前序遍历的非递归实现 public void nonRecPreOrder(TreeNode p){ Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode node=p; while(node!=null||stack.size()>0){ while(node!=null){ visted(node); stack.push(node); node=node.leftChild; } while(stack.size()>0){ node=stack.pop(); node=node.rightChild; } } } //中序遍历的非递归实现 public void nonRecInOrder(TreeNode p){ Stack<TreeNode> stack =new Stack<TreeNode>(); TreeNode node =p; while(node!=null||stack.size()>0){ //存在左子树 while(node!=null){ stack.push(node); node=node.leftChild; } //栈非空 if(stack.size()>0){ node=stack.pop(); visted(node); node=node.rightChild; } } } //后序遍历的非递归实现 public void noRecPostOrder(TreeNode p){ Stack<TreeNode> stack=new Stack<TreeNode>(); TreeNode node =p; while(p!=null){ //左子树入栈 for(;p.leftChild!=null;p=p.leftChild){ stack.push(p); } //当前结点无右子树或右子树已经输出 while(p!=null&&(p.rightChild==null||p.rightChild==node)){ visted(p); //纪录上一个已输出结点 node =p; if(stack.empty()) return; p=stack.pop(); } //处理右子树 stack.push(p); p=p.rightChild; } } public void visted(TreeNode subTree){ subTree.isVisted=true; System.out.println("key:"+subTree.key+"--name:"+subTree.data);; } //测试 public static void main(String[] args) { BinaryTree bt = new BinaryTree(); bt.createBinTree(bt.root); System.out.println("the size of the tree is " + bt.size()); System.out.println("the height of the tree is " + bt.height()); System.out.println("*******(前序遍历)[ABDECF]遍历*****************"); bt.preOrder(bt.root); System.out.println("*******(中序遍历)[DBEACF]遍历*****************"); bt.inOrder(bt.root); System.out.println("*******(后序遍历)[DEBFCA]遍历*****************"); bt.postOrder(bt.root); System.out.println("***非递归实现****(前序遍历)[ABDECF]遍历*****************"); bt.nonRecPreOrder(bt.root); System.out.println("***非递归实现****(中序遍历)[DBEACF]遍历*****************"); bt.nonRecInOrder(bt.root); System.out.println("***非递归实现****(后序遍历)[DEBFCA]遍历*****************"); bt.noRecPostOrder(bt.root); } }
新闻热点
疑难解答