BBN Communications Corp. 50 Moulton St. Cambridge, MA 02238
December 1983
This RFCspecifies the ARPANET 1822L Host Access Protocol, which is a sUCcessor to the existing 1822 Host Access Protocol. 1822L allows ARPANET hosts to use logical names as well as 1822's physical port locations to address each other.
+----------------+----------------+----------------+ 97 112 113 128 129 144 +-+--------------+----------------+-+--------------+ P E O # of addrs 1822L addr #1 F routing dist L F +-+--------------+----------------+-+--------------+ 145 160 161 176 +----------------+-+--------------+ E 1822L addr #2 F routing dist etc. F +----------------+-+--------------+
Name Server Reply Format Figure 3.4
- 38 -
1822L Host Access Protocol December 1983 RFC878
Type 12: Port List Reply - This is the reply to the Port
List Request host-to-IMP message. It contains the
number of names that map to this physical host port,
followed by two words per name: the first word contains
an 1822L name that maps to this port, and the second
contains either a zero or a one, signifying whether or
not that particular translation is effective. The
format is identical to the type 3 NDM Reply message
(see figure 3.2).
Type 15: 1822L Name or Address Error - This message is sent
in response to a type 0 message from a host that
contained an erroneous Source Host or Destination Host
field. Its sub-types are:
0: The Source Host 1822L name is not authorized or not
effective.
1: The Source Host 1822L address does not match the
host port used to send the message.
2: The Destination Host 1822L name is not authorized.
3: The physical host to which this singly-homed
Destination Host name translated is authorized and
up, but not effective. If the host was actually
down, a type 7 message would be returned, not a
type 15.
5: The multi-homed Destination Host name is authorized,
- 39 -
1822L Host Access Protocol December 1983 RFC878
but has no available effective translations.
6: A logically-addressed uncontrolled packet was sent
to a dead or non-effective host port. However, if
it is resubmitted, there may be another effective
host port to which the IMP may be able to attempt
to send the packet.
7: Logical addressing is not in use in this network.
8-15: Unassigned.
Types 4,13-14,16-255: Unassigned.
Bits 33-48: Source Host:
For type 0 messages, this field contains the 1822L name or
address of the host that originated the message. All
replies to the message should be sent to the host specified
herein. For message types 5-9 and 15, this field contains
the source host field used in a previous type 0 message sent
by this host.
Bits 49-64: Destination Host:
For type 0 messages, this field contains the 1822L name or
address that the message was sent to. This allows the
destination host to detect how it was specified by the
source host. For message types 5-9 and 15, this field
contains the destination host field used in a previous type
0 message sent by this host.
- 40 -
1822L Host Access Protocol December 1983 RFC878
Bits 65-76: Message ID:
For message types 0, 5, 7-9, and 15, this is the value
assigned by the source host to identify the message (see
section 3.1). This field is also used by message types 2
and 6.
Bits 77-80: Sub-type:
This field is used as a modifier by message types 0-2, 5-7,
9, and 15.
Bits 81-96: Message Length:
This field is contained in type 0, 3, 11, and 12 messages
only, and is the actual length in bits of the message
(exclusive of leader, leader padding, and hardware padding)
as computed by the IMP.
- 41 -
1822L Host Access Protocol December 1983 RFC878
4 REFERENCES
[1] "Specifications for the Interconnection of a Host and an
IMP", BBN Report 1822, December 1981 Revision.
[2] E. C. Rosen et. al., "ARPANET Routing Algorithm
Improvements", Internet Experimenter's Note 183 (also
published as BBN Report 4473, Vol. 1), August 1980, pp. 55-
107.
[3] J. Reynolds and J. Postel, "Assigned Numbers", Request For
Comments 870, October 1983, p. 14.
[4] J. Postel, ed., "Internet Protocol - DARPA Internet Program
Protocol Specification", Request for Comments 791, September
1981.
[5] J. Postel, "Address Mappings", Request for Comments 796,
September 1981.
- 42 -
1822L Host Access Protocol December 1983 RFC878
APPENDIX A
1822L-IP ADDRESS MAPPINGS
Once logical addressing is in active (or universal) use in a
network, to the extent that the "official" host tables for that
network specify hosts by their logical names rather than by their
physical network addresses, it would be desirable for hosts on
other networks to also be able to use the same logical names to
specify these hosts when sending traffic to them via the internet
[4].
Happily, there exists a natural mapping between logical names and
internet addresses that fits very nicely with the already
standard ARPANET-style address mapping as specified in RFC796,
Address Mappings [5]. The current ARPANET-style class A mapping