首页 > 学院 > 网络通信 > 正文

VT/TU交换对边缘网影响的分析(二)

2019-11-05 01:33:56
字体:
来源:转载
供稿:网友

  冲破50毫秒的桎梏
  对于那些在STS/AU层级监控信号的低速光纤链路(OC-3/STM-1以及OC-12/STM-4)而言,基于软件的APS解决方案可以通过经济、高效的硬件予以实现。随着城域网中的高速光纤信号(OC-48/STM-16以及OC-192/STM-64)不断激增,以软件为中心的APS解决方案需要功能更为强大的控制面板解决方案。
  
  例如,支持OC-12上行链路信号的网元可以为该链路处理12路STS-1,在此,每路STS-1必须作为完全不同的独立实体受到监控和操控。标准规定,假如光纤被切断,所有受保护的链路必须在50毫秒内恢复正常,因此每个适用的STS-1都必须实现广泛的性能监控。
  
  用于处理OC-192信号的新型网元必须治理192个不同的实体,以便在相同的50秒钟限制内应用APS。硬件资源、成帧器和交叉连接,非凡是微处理器,都可以在以软件为中心的解决方案中迅速超越响应限制。
  
  在支持分布式VT/TU交叉连接网络时,问题进一步复杂化。每路低阶支路现在都必须独立受到监控。每个VT/TU实体所必需的处理能力类似于每个STS或AU实体所需的能力,然而,所处理的独立实体的数量同 STS/AU层级相比增加不少。
  
  在以前的OC-192实例中,5,376路独立的VT可以在50毫秒的限制内在APS事件中实现监控和交叉连接。除此之外,假如ADM支持OC-48以及OC-192这两种信号的环通,所处理的VT和TU的集合容量便会增长到无法治理的水平。我们需要新技术分担那些在STS/AU或VT/TU层级支持APS的高容量网元中的软件和控制单元的负荷。
  
  网元级问题
  在设计新一代ADM以便在VT/TU层级支持集合与交叉连接时,OEM厂商面临着众多挑战。本文主要论述四种挑战:1)集中式而非服务器卡设计;2)VT/TU指针处理器的位置;3)高阶成帧器受到的影响;4)支持虚拟级联对10/100 以太网的影响。
  
  目前的城域接入以及核心ADM仅支持STS/AU层级的交叉连接,运营商对于更换整套网元并不感爱好。为了满足分布式VT/TU支持的新型需求,OEM厂商必须在无需升级机架的情况下实施解决方案。存在着两种选择。选择一是利用新的交叉连接卡更换现有的中心STS/AU 交叉连接卡,前者可以同时在STS/AU层级和VT/TU层级支持整理疏导功能。 选择二是保持现有STS/AU交叉连接卡的完整,并在平台中添加VT/TU服务器卡。
  
  在这两种情况中,目标都是在支持VT和TU的交叉连接的同时保持相同的总STS/AU交叉连接容量。在选择一中,添加VT/TU支持可以大大增加芯片数量、动力和板卡空间。另一方面,选择二更为理想化,机架中未被使用的插槽或者以前并未使用的插槽可以分配至VT/TU交叉连接服务器卡。在这种情况下,任何包含低阶VT/TU业务的高阶STS/AU业务被以STS/AU梯度选择性地导入新的服务器卡,VT和TU根据需求实现交叉连接,然后它们被发送回高阶交叉连接。
  
  值得注重的是,在业务被疏导和发送回高阶交叉连接之后,事情并未终结。这同时也被称为"发夹(hair-pinning)"或者"单臂(one-armed)"交叉连接。在这种安排中不存在任何从平台中的另外一支"臂"馈送VT/TU 交叉连接的低速支路,比如T1或者E1。
  
  这种新增的VT/TU交叉连接功能具有非常低廉的成本。插槽必需为新型VT/TU交叉连接服务器卡提供空间,现有STS/AU交叉连接的带宽(10%到25%)必须专用于这种新卡。例如,目前投入使用的容量为160 G STS/AU的ADM可以通过底板向新型"单臂" VT/TU疏导卡分配16 G到40 G的带宽。
  
  指向正确位置
  在向平台提供VT/TU交叉连接支持的过程中,下一个挑战便是低阶指针处理器的位置。SONET//SDH标准的核心前提是为同步框架定义一种机制,以便支持异步净荷的传输,例如T1以及E1等等。指针处理需要在同步容器内支持异步净荷的运动(STS/AU以及VT/TU)。
  
  在STS/AU和VT/TU层级说明指针和操控指针,分别被称为高阶指针处理和低阶指针处理。对于包含VT或TU的业务而言,在连接平台交叉连接卡之前,低阶指针处理是强制性要求。在STS和AU通过网络时,指针可以单独调整每个容器的位置。当所有容器在同一交叉连接点会聚时,它们无法正确定位。
  
  为了成功连接它们,承载VT和TU的所有容器必须通过那些系统的重新定位容器的低阶指针处理器。在平台中定位低阶指针处理存在两种选择:在线路卡中或者在交叉连接卡中。
  
  可用的功率和空间以及原有架构受到的影响可用来确定低阶指针处理器的位置。对于利用线路卡(馈送仅支持STS/AU的交叉连接卡)来部署系统的平台而言,新增加的低阶指针处理器的逻辑位置是新的VT/TU服务器卡。我们无需重新设计现有板卡以支持新的低阶指针处理器。该方案可以支持VT/TU交叉连接的特定容量,比如10 Gbit到50 Gbit。
  
  在VT/TU交叉连接的容量超过10 GB到50 GB的范围之后,每块板卡的动力预算可以命令低阶指针处理器分配至线路卡。这样做能够在平台的众多板卡中缓冲动力的增加。为了在线路卡或者交叉连接卡中灵活分配低阶指针处理器,指针处理器必须支持串行链路,而不是并行总线。
  
  评估其他组件受到的影响
  能够在VT/TU层级实现疏导功能的早期平台以及当前平台基于低阶指针处理器,能够处理容量为STS-12的业务,相应的低容量交叉连接共置于一块板卡。在这一集成级别,功耗预算可以得到满足,而且芯片间的距离很短,使得并行总线足以将低阶指针处理器连接至VT/TU交叉连接。随着工艺技术不断进步以及容量更高的指针处理器和VT/TU交叉连接不断涌现,集成高速串行链路的需求正变得至关重要。
  
  当我们在新型平台和现有平台增加VT/TU输入功能时,必须全面评估SONET/SDH成帧器和STS/AU交叉连接所受到的影响。在更换核心STS/AU交叉连接以支持STS/AU/VT/TU容器的系统中,新型低阶处理器和VT/TU交叉连接如何连接成帧器呢?此外,假如实施单臂交叉连接,在连接新的低阶指针处理器时,现有STS/AU交叉连接会受到什么影响?
  
  对于这两种情况而言,在现有系统中,所有线路卡和STS/AU交叉连接之间的同步都是全面的和封闭的。在任何点打开架构以支持VT/TU都需要对所有受影响的业务提供时延补偿。由于VT/TU疏导可以增加有限的处理时间,我们必须在原有的线路或STS/AU交叉连接卡上提供时延治理功能。这种时延治理也可以通过重新调整VT/TU整理业务在VT/TU交叉连接卡上予以实现,因此线路卡或者STS/AU交叉连接卡具备零时延。这种时延补偿可以在业务出现后从VT/TU交叉连接卡予以实现,也可以在进入VT/TU交叉连接之前通过预先处理业务来实现。
  
  网络支持更高的 VT/TU集合容量的重要推动因素便是为10/100以太网服务奠定基础。在升级设备以支持VT/TU交叉连接时,最后的考虑便是支持虚拟级联对10/100以太网的影响。
  
  虚拟级联以及LCAS依靠若干VT或TU容器在众多低速支路中平均分配10兆比特/秒或100兆比特/秒的以太网信号。例如,单个10兆比特/秒的以太网信号可以通过7个VT1.5容器进行分配,每个VT容器可以通过与其他6路 VT无关的网络实现交叉连接。所有VT被重新排序,然后在接收端合并,重新形成最初的10兆比特/秒的以太网信号。
  
  为了治理VT或者TU,操作人员必须确保所有连接能够通过静态方式正确地设置,正如映射至VT或TU以及以太网的业务一样。然而,在点对点EoS连接中,所有虚拟级联和LCAS机制可以在位于终端多路复用器(TM)的Ethernet-over-SONET(EoS)映射器中进行治理。因此,在升级平台以便在提供10/100 EoS服务的网络中支持VT/TU 交叉连接的时候,网元设计人员无需考虑新的问题。
  
  硅晶片级问题
  目前部署的网元基于VLSI芯片技术设计而成,其中采用0.25微米工艺或者更先进的工艺。此类技术能够以可以接受的功耗和板卡空间提供经济高效的解决方案,有效支持容量为5 GB的VT/TU交叉连接。
  
  DCS厂商被迫提高VT/TU交叉连接芯片的处理能力,以便打造带宽为10 Gbit到160 Gbit 的系统,这一过程可以在大型专用机架中完成。而且,为了使功耗和最终的散热功能保持在可以治理的水平,全部占地面积可以扩展至若干专用于VT/TU交叉连接的全高度机架。大容量VT/TU交叉连接需要较大的占地面积,并且需要消耗巨大的能量,这使得它们无法集成到传统的ADM架构之中。最终结果便是网络中的集中式VT/TU交叉连接架构以及回程需求。
  
  如今,随着最新工艺技术不断面世,比如0.18微米工艺和0.13微米工艺,设计人员开始有能力突破电源功耗和板卡空间的屏障。然而,当设计人员利用这些新型工艺技术在分布式网络架构中构建高密度VT/TU交叉连接时,他们碰到了新的挑战。
  
  将交叉连接架构从单一的STS/AU支持过渡至STS/AU/VT/TU支持,需要更多能耗、更多芯片以及更多板卡空间,以保持固定的总交叉连接容量。在每个独立的STS或AU中实现配置和交叉连接所必需的片上处理资源(即晶体管),类似于监控每个独立的VT或TU所必需的资源的复杂程度。
  
  在定义SONET和SDH时,本质内容是给定带宽中的VT和TU多于STS和AU。例如,在160 Gbit仅支持STS的交叉连接中,芯片内外存在着64条独立的2.5 GB串行链路。这会转化为3,072路不同的STS-1在特定的芯片区域进行配置和实现交叉连接。
  
  我们可以充分利用时间片(Time Sliced)架构在经济高效的低功耗解决方案内支持所有3,072路STS-1连接,但是我们仅具备有限数量的晶体管来支持串行链路处理过程以及交叉连接治理过程。
  
  达到上限
  事实上,STS/AU交叉连接的容量存在一个上限,受到现行工艺技术的限制。假如160 Gbit的交叉连接经过扩充能够支持VT1.5的交叉连接,用于配置和交叉连接的实体将从3,072增长到86,016(3,072 STS-1,每路包含28路VT1.5)。
  
  制造技术目前仍无法在单个芯片上提供必需的晶体管数量,所以无法在保持相同STS/AU交叉连接的同时支持巨幅增长。意即,VT/TU交叉连接的集合容量大大低于STS/AU交叉连接。因此,利用等同于仅支持STS/AU的交叉连接的集合容量建立STS/AU/VT/TU交叉连接,需要多块芯片的多级架构。随着架构向多级演进,总芯片数量和功耗呈几何数量级增长。
  
  在利用新的工艺技术制造更高密度的低阶指针处理器时,我们将面临类似的设计困难。例如,OC-192 SONET帧的高阶指针处理器芯片可以处理192个独立的STS-1容器。假如同一信号在STS-1内包含VT,芯片必须为5,376个独立的实体(VT1.5)提供额外的低阶处理能力、净荷调整能力以及支路监控能力。不仅晶体管的总数随实体数量的增长而大幅增长,每个实体内的晶体管数量也在增长,因为我们需要更多晶体管帮助软件治理此类增长效应所产生的影响。例如,额外的晶体管必须分担APS的软件负荷,以支持高密度VT/TU交叉连接。
  
  在设计芯片以支持VT/TU交叉连接时,另外一个需要考虑的问题便是能否集成交叉连接和低阶指针处理器。VLSI技术的进步可以支持更高密度的交叉连接和低阶指针处理器。理所当然的进步便是集成低阶指针处理器和交叉连接功能。
  
  正如分离的方案一样,集成设计能够比两种功能保持独立的设计更快速地接近集合交叉连接容量的上限。在0.13微米工艺技术中,假如考虑支持自动保护交换所必需的额外逻辑,集成式解决方案的容量上限在2.5 Gbit到5 Gbit之间。因此,设计人员必须在所需的集合VT/TU交叉连接容量与指针处理器所需的集成级别之间实现折衷。


发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表