1. APR 进程
光缆切断、设备失效或光连接器拔出等均会导致光功率丢失,出于对人眼安全的考虑,在主光通道的一个光段内光功率丢失的情况下,需要系统实施APR、ALS进程。为便于在链路重新连好以后系统轻易恢复,同时考虑实施自动(或人工)重启动进程。
当探测到所有主通道的光信号都丢失时,WDM/OTN 系统才启动APR进程, 关闭受影响的OTS段中所有的放大器;当信号恢复时,系统又能恢复光放大器的工作。这样能保证在关闭情况下,光纤中的光功率电平处于安全等级要求之内。
2. APR进程的基本原理
APR进程的基本原理如图1所示:当A点光缆断裂后,接收端口R2处会检测到光传送段信号的连续性丢失(LOC-OTS) ,这种丢失将会导致T2的发送端口输出功率的减少,同样又引起接收端口R1处的LOC-OTS ,从而使得发送端口T1处输出功率减少。通过此过程,系统可以保证在发生故障处的A点这一段光纤上的光功率都处于安全水平。
图1 APR功能示意
在受影响的OTS内,所有光输出端处的功率应在 3 秒之内(OTS中断时刻起)减成危险等级为+10dBm以下。
APR不排除在受影响的OMS段内对其它放大器的二次动作,也不排除OMS外正在工作的设备,如SDH单波长设备的关断。然而这不能干扰受影响的OTS的安全程序。
APR程序也不会导致下游产生其他告警,即只有受影响的OTS段知道。
3. APR进程激活及去激活时间
APR激活时间,即从“R2”出现LOC-OTS那一时刻起至“T1”减少发送光功率完成为止的时间。该时间由两部分组成,即“R2”端设备的激活时间和“R2”端设备的激活时间(考虑到线路的传输延时比较小,可以忽略不计)。这段时间包括两端的LOC-OTS的确认时间、监测时间和减少光放大器输出的响应时间。一般来说,“R1”端和“R2”端的激活时间相等。ITU-T规定总的激活时间应该小于3s,即每端的激活时间必须<1.5s。
APR的去激活进程与激活类似,应包括R2端设备的去激活响应时间和R1设备端的去激活响应时间。R1端去激活时间段应为从R1接收到正常工作信号至T1发送正常工作信号,而不再发送重启动脉冲为止。这两端的去激活时间差不多。由于光放大器的去激活时间要长,可以到300ms,单端的响应时间在800~1250ms,比激活时间要长,整个APR进程去激活时间应在1600~2500ms之间,该时间段包含了功放和预放的响应时间。具体情况演示如图2所示。
图2 WDM设备APR进程的时间流程图
4. 重启动脉冲功率电平
重启动脉冲电平应该小于+10dBm,但也不能太小,必须保证其经过线路衰减后的光功率值仍大于LOC-OTS判决阈值;并且重启动脉冲与正常的工作信号不相同。
5. 带RAMAN放大器WDM系统
对于带RAMAN增益型的光放大器WDM系统也必须满足同样的光安全要求,并必须保证在APR进程中对RAMAN泵浦也进行光安全进程处理。在光纤切断时,接收接口R2处出现的光传输段的连续性丢失(LOC-OTS)缺陷,不仅用于减少T2端EDFA光放大器,也用来减少/切断接收接口R2的RAMAN泵浦源输出功率, T2的输出功率减少又导致接收接口R1处的LOC-OTS缺陷,后者又使得传输接口T1处的输出功率减少,同时减少/切断接收接口R1的RAMAN泵浦源输出功率。
假如光纤恢复正常,它将导致对端“R2”设备解除LOC-OTS状态,T1- R2方向的反向RAMAN 放大器恢复,T2发送端口信号恢复至正常工作状态,从而导致“R1”设备解除LOC-OTS状态,T2- R1方向的反向RAMAN 放大器恢复,进而T1发送进入正常状态,整个系统恢复正常传输。采用RAMAN光放大器WDM系统其APR激活时间小于3秒,去激活时间小于2.5秒。
小结
当前WDM 技术复用的波长数目已经超过160波,随着系统波长数目的增加,光放大器总输出功率提高到+20dBm, 或更高,高功率状态下APR功能也显得更为重要。新制定的《波分复用系统(WDM)光安全进程技术要求》定义了光安全进程的基本要求,可以确保人身在光放大器条件下的安全工作。ITU-T 正在对G.664做进一步的修改,例如引入OSC光监控通路完成重启动进程。我们应该密切注重国际上的最新发展,以确保国内标准的先进性和实时更新。
新闻热点
疑难解答