3.DWDM技术解析
WDM是将光纤的可用波段分成若干个小信道,每个信道对应一个波长,使单波长传输变成多波长同时传输,从而大大增加光纤的传输容量。例如,假如每个波长的传输速率为2.5Gb/s,在一根光纤中同时使用4个波长,则光纤总的传输容量可达2.5×4=10Gb/s。
WDM技术过去主要在光纤的C波段(1530~1565nm)使用。最新的技术已将石英光纤在1.3~1.6μm的两个低损耗窗口打通并连成一个区域,未来的WDM可在1.3~1.6μm的全波段窗口中使用,每根光纤的复用光波长数可达几千,传输容量可高达数十个太比特。因此,完全可以认为WDM技术将为光传输网的发展提供几乎取之不尽的资源。
3.1 WDM的要害技术
WDM技术在光传输网中的典型系统是由光合波器(光复用器)、光放大器和可以提取独立光波长的光分波器(光解复用器)组成。发射端的光发射机发出光波长不同且精度和稳定度能满足一定要求的光信号,经过光合波器、掺铒光纤放大器,送入光纤中传输(光纤线路中可根据需要设置光线路放大器)。到达接收端后,经光纤前置放大器放大,通过光分波器恢复成原来的各路光信号。
分/合波器是一种光学滤波器,其作用是对各路光波长信号进行复用与解复用。对分/合波器的基本要求是:插入损耗低、隔离度高、良好的带通特性、温度稳定性好、复用波长数多、较高的分辨率等。
光放大器的作用是对复用后的光信号进行直接光放大,以解决WDM系统的长距离传输问题。由于分/合波器的插入损耗较大,因此WDM系统的传输距离较短,一般仅为三四十公里,很难满足实际通信的需要。使用光放大器后,可实现600km以上的无电中继传输。对光放大器的基本要求是:增益高、宽带、噪声系数小等。
WDM系统的超长距离传输对光源提出了非常苛刻的要求。光源必须具有十分狭窄的谱宽和非常稳定的发射波长。
光纤通信系统的传输距离受到系统损耗和色散的限制。在高速率传输情况下,色散占主要地位。光放大器的使用只是解决了损耗受限的问题,而色散问题则需要选择谱宽极窄的半导体激光器来解决。实践证实,采用传统的直接调制方式会使半导体激光器在高速率时产生啁啾,限制了系统的传输距离。为此WDM系统使用的光源必须放弃传统的直接调制方式,采用外调制方法,即所谓外调制型光源。
3.2 WDM的技术优点
WDM技术之所以在近几年得到迅猛发展是因为它具有下述优点:
3.2.1传输容量大,可节约宝贵的光纤资源。对单波长光纤系统而言,收发一个信号需要使用一对光纤,而对于WDM系统,不管有多少个信号,整个复用系统只需要一对光纤。例如对于16个2.5Gb/s系统来说,单波长光纤系统需要32根光纤,而WDM系统仅需要2根光纤。
3.2.2对各类业务信号“透明”,可以传输不同类型的信号,如数字信号、模拟信号等,并能对其进行合成和分解。
3.2.3网络扩容时不需要敷设更多的光纤,也不需要使用高速的网络部件,只需要换端机和增加一个附加光波长就可以引入任意新业务或扩充容量,因此WDM技术是理想的扩容手段。
3.2.4组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。
3.3.3 WDM技术目前存在的问题
以WDM技术为基础的具有分插复用功能和交叉连接功能的光传输网具有易于重构、良好的扩展性等巨大优势,已成为未来高速传输网的发展方向,但在真正实现之前,还必须解决下列问题。
3.3.1 网络治理;目前,WDM系统的网络治理,非凡是具有复杂的上/下通路需求的WDM网络治理仍处于不成熟期。假如WDM系统不能进行有效的网络治理,将很难在网络中大规模采用。例如在故障治理方面,由于WDM系统可以在光通道上支持不同类型的业务信号,一旦WDM系统发生故障,操作系统应能及时发现故障,并找出故障原因。但到目前为止,相关的运行维护软件仍不成熟;在性能治理方面,WDM系统使用模拟方式复用及放大光信号,因此常用的比特误码率并不适用于衡量WDM的业务质量,必须寻找一个新的参数来准确衡量网络向用户提供的服务质量等。假如这些问题不及时解决,将阻碍WDM系统的发展。
3.3.2 互连互通;由于WDM是一项新生的技术,其行业标准制定较粗,因此不同商家的WDM产品互通性较差,非凡是在上层的网络治理方面。为了保证WDM系统在网络中大规模实施,需保证WDM系统间的互操作性以及WDM系统与传统系统间互连、互通,因此应加强光接口设备的研究。
3.3.3 光器件;一些重要光器件的不成熟将直接限制未来光传输网的发展,如可调谐激光器等。对于一些大的运营公司来说,在网络中处理几个不同的激光器就已经非常棘手了,更不用说几十路光信号了。通常光网络中需要采用4~6个能在整个网络中进行调谐的激光器,但目前这种可调谐激光器还无法进入商用。
4. WDM结构
WDM常被分为以下三种:LongHaul-DWDM 、Metro-DWDM和CWDM,之所以这么分除了网络层次上的原因外,很大程度上也有设备技术上的因素。
4.1 Metro DWDM
Metro-DWDM与 LongHaul-DWDM相比,城域之间的相对短距离可以在设备的光收发器上节省部分投资,甚至无须增加REG就做到一个环网的连接。同时,由于波分层面的投资将主要由光器件的价格所决定,所以波道的数目并不多,甚至可能不一定使用L波段,可减少OTU的数量,这无疑又是一个投资的降低点。
Metro-DWDM 是业界普遍看好的城域核心网的建设方式,不仅具有大容量和可扩展性,同时由于对业务完全透明,这将有利于将来向AON的演进。
目前城域网市场正处于一个飞速发展的初期,各种新技术和解决方案层出不穷。在众多方案中,ip over MetroDWDM脱颍而出,主要有以下原因:
①Metro DWDM投资低;Metro DWDM采用光分插复用器(OADM)代替传统的OTM-to-OTM,除了在业务的两端外,其余节点不需要O-E-O转换,节省了昂贵的电中继;通过多个OADM级联实现扩容,网络建设初期仅需要少量的光器件,降低了首期投资,也降低了投资风险。对于大颗粒业务(如GE等),Metro DWDM是一种非常经济的传输方案。
②业务传输具有透明性;和其它传输方案相比,透明传输各种业务是DWDM的先天优势。和IP over ATM等形式相比,IP over DWDM节省了中间层,设备趋于扁平化,治理更轻易。
③提供快速可靠的光层保护倒换;Metro DWDM提供快速可靠的光层保护倒换,发生断纤事故时,可以在50ms以内将业务倒换到保护路径上去。
④比光纤直连提供高得多的容量;城域环境有丰富的光纤,不少人认为没有建立DWDM的必要,其实这是一种误解。首先,裸光纤数目是有限的,总有枯竭的时候;其次,采用裸光纤,接入业务的治理和维护非常困难,随业务增加,治理和维护费用会快速增加;再次,如同没有经过精加工的农产品一样,裸光纤出租的利润有限;最后也是最重要的是,当环网周长较长(如15km以上),采用光纤直连的综合成本接近甚至比Metro DWDM还高,随着业务增加,其成本将远远超过Metro DWDM。
Metro DWDM下一步的发展可能会把传输节点与各种业务节点融合,如将ATM交换机、IP边缘路由器、数字环路载波系统、分插复用器(ADM)、数字交叉连接器(DXC)节点、波分复用(WDM)设备乃至最终将光分插复用器/光交叉连接器(OADM/OXC)光传送节点结合在一个物理实体,统一控制和治理,减少了大量独立的业务节点和传送节点设备。
做为一个传输功能模块,其发展依然集中在OXC和OADM上,增强功能、降低成本仍将是主要任务。目前的OADM采用薄膜滤波器,通过级联滤波器实现更多波长的上下;近年来发展起来的阵列波导光栅(AWG)技术可以将分波器、合波器、光开关矩阵和可调衰减器(VOA)全部功能在一个小小的硅片上实现,象集成电路一样大规模生产,不仅加工成本比薄膜滤波技术更低,而且可以通过软件灵活选择波长的上下和穿通,通过软件控制扩容,不需要增加任何光器件。
4.2稀疏波分复用CWDM
DWDM(密集波分复用)无疑是当今光纤应用领域的首选技术,但其昂贵的价格影响其推广应用,而CWDM(稀疏波分复用)在此需求下应运而生。稀疏波分复用,顾名思义,是密集波分复用的近亲,它们的区别主要有二点:
①CWDM载波通道间距较宽,因此,同一根光纤上只能复用5到6个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;
②CWDM调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM避开了这一难点,因而大幅降低了成本,整个CWDM系统成本只有DWDM的30%。
在光纤中传输两个不同波长之间的间距是区分DWDM和CWDM的主要参数(不是一些厂家宣传的波长数量)。DWDM系统的波长间隔一般为100GHz (0.8nm)或50GHz(0.4nm),将来的系统中可能会有更窄的间距(但这样会影响光孤子的使用,因此尚不确定)。过去的DWDM受EDFA放大波段的影响,不仅需要在全线路段进行增益均衡,同时由于采用DFB激光器作为光源,温度漂移系数为0.08nm/℃,因此需要采用冷却技术来稳定波长,以避免因温度变化波长漂移到复用器和解复用器的滤波器通带之外。而假如城域间距离偏短,不使用EDFA进行组网,CWDM就可以将相邻波长间隔放宽到 10nm或20nm,将波长范围扩展到整个传输窗口:从1200nm-1700nm。而且带来一系列的技术简化-从激光器(对温度已不再敏感,因为信道带宽能够保证漂移后的波长不受影响)、分波合波器、OADM直到OXC,为运营商带来大量的投资盈余。
CWDM用很低的成本提供了很高的接入带宽,适用于点对点、以太网、SONET环等各种流行的网络结构,非凡适合短距离、高带宽、接入点密集的通信应用场合,如大楼内或大楼之间的网络通信。尤其值得一提的是CWDM与PON(无源光网络)的搭配使用。PON是一种廉价的、一点对多点的光纤通信方式,通过与 CWDM相结合,每个单独波长信道都可作为PON的虚拟光链路,实现中心节点与多个分布节点的宽带数据传输。
目前,有几家公司正推出与CWDM相关的产品。LuxN公司出品的WideWav系列CWDM模块支持8个CWDM信道,或者支持4个CWDM信道加16 个DWDM信道。Ocular公司推出的采用CWDM技术的产品有OSX-6000和OSX-1000两个系列的交换机,其最大特色在于能为高端用户提供专用波长信道服务和SAN服务。
虽然CWDM在城域网使用具有一定的优势,但需要澄清的是,对CWDM的实际需求在近期仍将取决于以下因素:
①网络容量的可持续发展性;
②宽带业务的需求性;
③光电子技术的发展;
④商用的普及性和用户投资的限制。
但是,CWDM是成本与性能折衷的产物,不可避免地存在一些性能上的局限。业内专家指出,CWDM目前尚存在以下4点不足:
①CWDM在单根光纤上支持的复用波长个数较少,导致日后扩容成本较高;
②复用器、复用解调器等设备的成本还应进一步降低,这些设备不能只是DMDM相应设备的简单改型;
③CWDM还未形成标准。
6.环形网结构
虽然格形光网络能提供诸多的优点,但是大多数运营商仍然采用DWDM环形城域网。主要是因为对SONET环网的结构已经很熟悉,另外环形网在光缆断裂或电路插卡失效的情况下能够自动复原。用户已逐渐习惯采用提供备份电路的网络(如SONET/SDH),因此,当电路发生故障时,若不能自动提供迂回路由是难以接受的。最好的方法是,首先选择DWDM环形城域网,然后再逐步向格形网过渡。当然,这将给设备制造商带来更大的挑战。DWDM设备必须适应这种转变,而且成本要低。DWDM环形城域网涉及到整个网络的三个部分:城域网接入部分、城域网骨干部分、城域网局间部分。
用于城域网的DWDM接入设备,必须能够可靠地传递业务且具有较高的扩展能力,提供16至44个有保护的波长信道。大多数设备制造商还不能提供具有如此大的扩展能力的接入设备,能处理从DS-3(44.736Mb/s)到OC-48c(2.5Gb/s)范围内的各种支路信号。实际的解决方法通常采用两类设备:较小的DWDM设备用于处理DS-3到OC-3(155.52Mb/s)的信号,较大的DWDM设备用于处理从OC-12c (622.080Mb/s)到OC-48c,甚至到OC-192c(9.952Gb/s)的各种支路信号。较小的设备通常采用一个波长,并与较大的设备兼容。在用一个波长发送业务信号之前,先将低速率支路电信号(OC-3、OC-12)复用到OC-48级的电信号来提高波长利用率。这些DWDM接入设备能够包容各种业务,包括SONET/SDH、GbE、ATM和IP等,业务提供商无需采用不同的接入设备,就能满足用户的多种不同需求。这种构思是把网络智能推到网络边缘,使骨干网尽量保持透明、快速。
城域网骨干部分的设备,是许多厂商必须关注的领域。这是因为主要设备;光交换机还不能完全处理来自于城域接入设备的各种业务流。业务提供商需要的是一个规模更大、具有高度扩展能力的256×256 OC-48光交换机(能扩展到1024×1024),向下能够治理DS-3/STS-1级的业务,它能将DS-3到OC-192级的业务从网络一侧交换到任一侧。信号的再生也在此完成,DWDM城域接入设备通常是不具备此项功能的。这种大规模的光交换机能使来自于城域网、长途网的业务终接于一个终端设备和一个交换矩阵上。
DWDM城域网结构的最后一部分是连接光交换设备的器件。这种器件通常是DWDM长途传输设备的缩小版本,在大多数情况下是同样的设备。典型配置采用不小于40个有备份的波长信道;在某些情况下,设备还采用4比1的OC-192电路插卡来提高波长利用率。为了答应局间采用“点击式”结构,这种器件也接到光交换机。这三部分的连接结构和一个治理它们的软件平台构成DWDM城域网的整体结构。
7.城域网发展趋势
7.1MSR(城域网多业务环)方案
MSR是一个新生的概念,它将交换和传输简化,同时也把交换和传输这两项技术进行了有机的集成,使之成为一个整体。MSR可提供Ethernet、GE、 DVB、ATM、POS、X.85和X.86支路接口,能以动态数据分组环的方式工作,像路由器一样在环上转发包括IP包在内的分组,在环上运行的业务可提供单播、组播和广播模式。由MSR组成的网络有以下特点:
环上的业务是透明的;数据、视频和TDM可集成在一块芯片上,实现三网融合;在50毫秒以内实现二层保护倒换,具有自动拓扑发现和性能治理功能;环和环上运行的业务具有弹性,可大可小、可多可少;接入环和骨干环可以互相嵌套;双向对称反转环都被用来传送数据、信令和网管帧;群路业务可以是STM- 16/OC-48、STM-64/OC-192、GE、10GE、HOVC的级联;可进行动态的节点添加和删除;所有支路业务、信令和网管帧有提供优先级队列和服务质量等级的功能,支持三层(包括IP包在内)的存储转发;MSR帧格式与群路的类型、速率无关。
MSR的提出,是城域传送网技术的一大突破。由此,城域光网络技术又有了新的选择。
7.2 ASON(自动交换光网络)
在大多数人眼中,ASON还仅仅是一个概念。但是有专家预言,ASON的最先的应用可能是在城域网,原因如下:首先是城域网中大型的业务结点及带宽需求,其次是城域网有实时变化的业务流向,第三就是ASON的独特的网络恢复机制。
实时变化的业务流量,非凡是以IP为主导的网络业务仍然是不可预知的,需要传输网络具有更好的自适应能力。这种适用能力不仅是指网络接口或网络容量的适应能力,更包含网络连接的自适应能力。因此有必要引入交换信令的概念,而ASON就是我们能够实现的智能传输网络协议,它在传输网络中引入了动态交换,使得动态分配带宽成为可能。
现有的集中式格形网恢复方法不能适应业务容量急剧上升的情况,而ASON可通过邻居发现、链路状态更新、路由计算、光通路治理、端到端保护等多方面功能的相互协调建立一种可行可靠的保护恢复机制,实现了网络资源和拓扑结构的自动发现,提供了智能的光路由并可以提供分布式的智能恢复算法。
有了智能光网络,城域网的业务的调配就变得更加灵活;网络运营商可以提供更多类型的业务服务(如带宽批发);提供更多类型的保护恢复机制;针对不同种类的业务级别,提供不同类型的服务等级等等。
7.3 DWDM技术延伸SAN
作为基于密集波分复用(DWDM)的新一代宽带网络,治理波长服务承诺最终可以使通过光纤城域网(MAN)扩展SAN应用,且对公司来说价格合理。
DWDM多路复用器,如思科最近公布的ONS 15540、北电的OPTera Metro 5200多服务平台、Oni System的ONLINE系列和Akara的OUSP 2000,可以把一束光纤分成多个信道,而每个信道都能以透明方式支持不同的协议及应用。这些协议及应用包括光纤通道、吉位以太网、同步光纤网(Sonet)或ATM。
这项技术使企业或服务提供商能够把部署及维护光纤基础设施的高昂成本分摊给多个地点、应用及用户。典型的一条DWDM连接可以支持64个无保护信道,或32个受保护信道(成对的冗余信道用于备份),而每个信道支持2.5Gbps或10Gbps速率。
DWDM还把在现有光纤上部署新的带宽或服务所需的时间缩短到了几周甚至几天。相比之下,部署计费的“点亮光纤”(lit fiber)服务却需要80至120天。
分析家和提供商一致认为,存储应用将是推动这个市场的首要因素。确切地说,治理波长服务针对希望跨多个地点治理存储资源的众多企业,它既降低总体拥有成本,又能够实现灾难恢复。
基于DWDM的治理波长服务提供了价格合理的光纤连接,而这些连接具有企业系统连接(Escon)、光纤通道和光纤互连(Ficon)所要求的高吞吐量、低时延。
眼下,基于DWDM的服务主要集中在一些都市区。服务出现这种密集,原因主要在于最后一公里问题及服务提供商只能着眼于许多公司聚集的地区。
如今的服务在价格机制、地区分布和支持级别方面也大不相同,这意味着用户在购买时得认真作一番比较。
从最基本方面而言,光纤提供商为顾客安装点对点、未保护或受保护DWDM连接,并提供维护。至于治理光纤通道、Escon连接及存储设备与DWDM设备如何联系则取决于用户。
8.DWDM城域网的新方式
许多城市电信网运营商采用SDH技术建造了他们的网络。但是,随着需求的增长,这些运营商面临困难的决策。将整个SDH网络升级到更大容量需要对新设备作大量投资,还可能因为分组数据业务流量的上升需要另建一个网络,造成有两个网络要治理的局面。还有,城市地区可用的光纤数目远远不是无限的,因此堆栈 SDH环或添加新的点对点连接未必可行。
DWDM是一个明显的解决方案,但很多运营商因为其代价高昂而却步。用于长途网的常规系统方式成本太高,而且无法满足城域环境的某些非凡要求。不过,可以面向城域环境的要求调整解决方案,形成更简单、更具成本效益的方式。首先来考虑主要的要求:
光纤网利用率:城域环境可用的光纤数目通常是有限的,而有时候无法部署更多光纤,因为在人口密集的城区这样做成本太高。另一个方案是租用光纤,但这意味着运营商要为每一公里租用的光纤付费,无论有无营业收入。因此主要目标应是尽量减少所需的光纤。
光纤网的利用率应该尽可能提高现有设备的复用:必须保护以前所作的设备投资;通常不考虑报废。一般而言,运营商会碰到对容量要求比较宽松的客户,可用现有设备为其服务。
将第一批通信信道投入运行所需的投资必须较低,而且要能随着营业收入的上升而逐步增加信道损耗容忍度:城域光纤网一般比长途网有更高的链路损耗。大量的接续和光纤配线架占用很大一部分的功率预算,其结果是,高达每公里0.8dB的损耗值并不罕见。
系统对损耗的容忍度越好,它需要的光放大器就越少,其成本也就越小多业务支持。随着网络和服务的演变,不可能猜测哪一种业务流将占主导地位。
系统必须是业务流协议透明的10Gbit/s能力:在长途网,10Gbit/s正在普及。城域网对此等高比特率的需要固然超前了一点,但有能力承载一个 10Gbit/s信号从长途网进入城域网内的一个PoP(接入点)将是一大优势,成为城市电信运营商区分自身的因素。由此也可避免部署进入城域网之前的昂贵的分接设备。
系统必须能够处理SDH/SONET和以太网的10Gbit/s业务流信号低的生命周期成本:也许最重要的参数是拥有一个易于安装、运行和维护的网络,因为在网络的整个生命周期,这方面的成本通常比设备成本更突出。影响此等成本的参数包括治理和维护网络所需的员工技能水平,以及所需的零部件。
低的网络复杂程度至关重要,同样重要的是易于使用和整合入现有网络运行中心的治理方案。
DWDM是当今唯一可达到容量、可扩缩性和透明度等方面要求的技术。要害是如何使其充分低的成本和高的效率,以适于城域段的应用。
城域网牵涉的距离比较短,由于损耗较大,常规系统结构仍要求有光放大器,以满足容量和大小方面的要求。瑞典Lumentis公司推出的对损耗容忍度较好的新型系统结构减少了对光放大器的需要,从而推进了DWDM在城域网中的大范围应用。不采用或少应用光放大器的DWDM网络的优点是:
低的网络初期投资;因为在部署第一批信道时,光放大器的开支可能就要占用超过一半的设备成本。
较方便的波长治理;因为所有波长都是独立的,并可被添加/路由,无需采用复杂的功率调节和信道平衡方案以补偿现有信道更可靠的网络。
一个失效的光放大器就可瘫痪整个网络,因为所有经过该放大器的波长都会受到影响较低的生命周期成本。无需库存昂贵的放大器配件,而且对部署、交付和配置网络的员工的技能要求也不高。
当然,网络的损耗容忍度总是有限的,因此还是可能要部署一些光放大器。但大多数情况下是不需要光放大器的。来自Lumentis公司的新结构使无放大器的网络与其它解决方案相比具有两倍以上的容量。由瑞典Validation公司进行的试验确认和超出了这些说法。在一个光纤网中建立一个无放大器的98公里环路,有20个卫星节点,每一个有2个波长的加减能力,结果证实能提供无错传输。常规的无放大器解决方案仅能局限于4到5个节点。
去除光放大器是第一个大步,但还需要其它措施来应对系统的要求。Lumentis有一种新产品可将10个信道集中到一个波长上。这是Lumentis多向可扩缩性(MDS)概念的又一组成部分,实现一个波长内的可扩缩性。该部分称为SDH/SONETMuXPonder,在一个波长上承载多达8个STM- 1/OC-3和2个STM-4/OC-12信道,为此等业务流提供低成本高效的传送。
MuxPonder可在DWDM城域解决方案中作为进入点。通常让一个STM-1/OC-3占用一个波长是不利于成本效率的,但MuxPonder答应八个这样的信道在一个波长上,从而消除了这一局限。在少量波长上连接现有SDH/SONET设备,就拥有了一个能适应任何业务流类型或比特率的网络解决方案。
另一个要考虑的因素是,MuxPonder几乎可即时添加业务信道。安装MuxPonder时,一个波长管被建立,运营商可逐步增加至业务信道容量限额,而无需担心创建光电路。只是将SDH/SONET盒连接到MuxPonder的相应端口。这样,MuxPonder可保护运营商以前对SDH/SONET 设备的投资,减少需要投资更多多路复用器,以在一个DWDM波长上高效率地承载业务信道。类似地,Lumentis的双千兆比以太网转发器可在一个波长上实现两个IP业务信道,以更高效率利用网络。
另一种高效率利用网络的方式是在网络中移动容量。与其设置固定的光电路以满足短时间的需求但大部分时间处于闲置状态,不如使用光交叉连接(OXC)将未用的波长搬到需要的地方。其结果是需要部署较少的波长。不过,要保持这一解决方案的成本效率,OXC的位置十分重要。单纯从性能观点看,最有效的解决方案就是有一个网格拓扑,在每一个节点配备OXC,但从成本上说这不是一个好的解决方案。平均而言,在一个全贯通网格结构中,到达一个节点的业务流量的70%是经过而已,因此没有必要在每一个节点部署如此昂贵的装置。相反,采用被动加减滤波器,结合在选定节点和与子网互连的节点部署OXC的拓扑,具有高得多的成本效率。
一个损耗容忍度好的结构,结合MuxPonder,双千兆比以太网转发器,和OXC等装置,可实现无放大器的网络,为城市运营商带来高效率,低进入成本,低生命周期成本的网络。这将缩短实现盈利的时间,并为运营商带来强大的多业务网络,足以满足当前和未来的需求。
新闻热点
疑难解答