首页 > 开发 > Python > 正文

Python 中如何实现参数化测试的方法示例

2024-09-09 19:03:12
字体:
来源:转载
供稿:网友

之前,我曾转过一个单元测试框架系列的文章,里面介绍了 unittest、nose/nose2 与 pytest 这三个最受人欢迎的 Python 测试框架。

本文想针对测试中一种很常见的测试场景,即参数化测试,继续聊聊关于测试的话题,并尝试将这几个测试框架串联起来,做一个横向的比对,加深理解。

1、什么是参数化测试?

对于普通测试来说,一个测试方法只需要运行一遍,而参数化测试对于一个测试方法,可能需要传入一系列参数,然后进行多次测试。

比如,我们要测试某个系统的登录功能,就可能要分别传入不同的用户名与密码,进行测试:使用包含非法字符的用户名、使用未注册的用户名、使用超长的用户名、使用错误的密码、使用合理的数据等等。

参数化测试是一种“数据驱动测试”(Data-Driven Test),在同一个方法上测试不同的参数,以覆盖所有可能的预期分支的结果。它的测试数据可以与测试行为分离,被放入文件、数据库或者外部介质中,再由测试程序读取。

2、参数化测试的实现思路?

通常而言,一个测试方法就是一个最小的测试单元,其功能应该尽量地原子化和单一化。

先来看看两种实现参数化测试的思路:一种是写一个测试方法,在其内部对所有测试参数进行遍历;另一种是在测试方法之外写遍历参数的逻辑,然后依次调用该测试方法。

这两种思路都能达到测试目的,在简单业务中,没有毛病。然而,实际上它们都只有一个测试单元,在统计测试用例数情况,或者生成测试报告的时候,并不乐观。可扩展性也是个问题。

那么,现有的测试框架是如何解决这个问题的呢?

它们都借助了装饰器,主要的思路是:利用原测试方法(例如 test()),来生成多个新的测试方法(例如 test1()、test2()……),并将参数依次赋值给它们。

由于测试框架们通常把一个测试单元统计为一个“test”,所以这种“由一生多”的思路相比前面的两种思路,在统计测试结果时,就具有很大的优势。

3、参数化测试的使用方法?

Python 标准库中的unittest 自身不支持参数化测试,为了解决这个问题,有人专门开发了两个库:一个是ddt ,一个是parameterized 。

ddt 正好是“Data-Driven Tests”(数据驱动测试)的缩写。典型用法:

import unittestfrom ddt import ddt,data,unpack@ddtclass MyTest(unittest.TestCase):  @data((3, 1), (-1, 0), (1.2, 1.0))  @unpack  def test_values(self, first, second):    self.assertTrue(first > second)unittest.main(verbosity=2)

运行的结果如下:

test_values_1__3__1_ (__main__.MyTest) ... ok
test_values_2___1__0_ (__main__.MyTest) ... FAIL
test_values_3__1_2__1_0_ (__main__.MyTest) ... ok

==================================================
FAIL: test_values_2___1__0_ (__main__.MyTest)
--------------------------------------------------
Traceback (most recent call last):
  File "C:/Python36/lib/site-packages/ddt.py", line 145, in wrapper
    return func(self, *args, **kwargs)
  File "C:/Users/pythoncat/PycharmProjects/study/testparam.py", line 9, in test_values
    self.assertTrue(first > second)
AssertionError: False is not true

----------------------------------------------
Ran 3 tests in 0.001s

FAILED (failures=1)

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表